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Pii studiu nuculanidnich svrchnokarbonskych mlzti (Pelecypode) hornoslezské
predhlubng (Kumpera, O.—Prantl, F.—Ruazidka, B. 1960; R-
zit¢ka, B.—Bojkowski, J., 1960) setkdvali jsme se podobné jako diivéjsi
autori s urditymi potiZemi, které spoéivaly v tom, Ze jsme nemohli uvnitt ndmi studo-
vanych druh@i sestavit prirozené ontogenetické fady. Proto jsme udinili zajimavy
pokus s holotypem drubhu Polidevcia hrebnickit RuzZié¢ka—Bojkowski,
spodivajici v tom, Ze jsme rozkreslili jednotliva ristova stadia holotypu, respektive
pravé misky jej predstavujici, podle jednotlivych ptirtstkovych plata. Ziskali jsme
tak -celkem 24 samostatnych obrysovych krlvek které odpovidaji postupnym
ristovym stadiim studovaného jedince.

Tato ristova stadia lze seskupit do t¥1 az étyt ontogenetickych fazi, které ptedbézné
oznadujeme jako fazi brefickou, neanickou, efebickou a geron-
tickou.

Ontogeneticky nejmladsi féze brefickd odpovidd stadiim, ve kterych
jesté nedoslo k vytvoreni charakteristického rostra, a bylo proto moZno ji oznadit
ijako fa4zi prerostralni. Tato faize odpovidd na studovaném jedinei rasto-
vému stadiu 1—-6.

Dalsi faze neanicksé, odpovidajici rastovému stadiu 7—S8, je charakteri-
zovana projevenim tendence k tvorbé rostra a bylo by ji moZno oznadit také jako
inicidlni fazirostralni

Efebicka faze, kterd podina rustovym stadiem 9, odpovidé ontogenetické
fazi, ve které vytvareni rostra se stalo jiz znakem dominantnim. Proto je moZno
oznalit tuto fizi jako f4zi rostralni.

Konetna faze gerontickd je fazi senilni a odpovidd snizeni rychlosti
celkového rastu misky.

Uvedené ontogenetické faze rustu studované misky druhu Polidevcia hrebnickis
pravdépodobné odpovidaji soubézné problha]mlmu ontogenetickému vyvoji mékkych
télesnych dasti daného jedince. Za ptredpokladu, Ze tyto ontogenetické fize a jejich
jednotliva rustova stadia odpovidaji rekapitulaci vyvoje fylogenetického, muzZeme
usuzovat, Ze nuculanidni formy prochazely ve svém vyvoji fazi, ve které jesté
k vyvoji rostra nedoslo, a Ze tedy pochézeji z morfologicky odchylné utvaienych
ancestralnich forem. Déle nepovaiujeme za vyloudeno, Ze podatek tendence k vytva-
feni rostra byl podminén zménami genetického charakteru, za spolupusobem
zménénych ekologickych faktort.

Utelem této studie byla té% snaha ukézat nezbytnost podrobné biometrické
analyzy ontogenetického vyvoje jednotlivych forem povazovanych béZné za samo-
statné druhy. Doufdme, Ze zjisténi rozdilného charakteru pribyvéni délky a vysky
u nuculanidnich mlzt mohlo by se stat objektivnim kriteriem pro stanoveni druhu.
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Potvrzeni tohoto ndzoru muze ovSem piinést jen dalsi zevrubné studium v tomto
sméru. ,
Soudasné povazujeme za neudrzitelné pouzivani béiné urdovaci metody, které
P

pii druhovém srovnavani rtznych forem nepfihlizi k morfologickym diferencim
podminénym réznymi ontogenetickymi stadii srovnavaciho materidlu.

Contribution to the Study of the Ontogeny of Nuculanid Pelecypods
Abstract

The question of applicability or inapplicability of certain parameters for the bio-
metrical analysis of nuculanid pelecypods is discussed in the present paper. Further-
more, the growth regularity of the characteristic proportions during the ontogeny of
the studied member of the family (Polidevcia hrebnickiz RiuZiéka-Bojkowski, 1960)
is followed.

In the course of the study of nuculanid pelecypods of the Upper Silesian fore-deep
(Kumpera, O.—Prantl, F.—Ruzi¢ka, B, 1960; Ruazi¢ka, B. —
Bojkowski, J.,, 1960) the authors, as well as preceding students, met with
certain difficulties, which consisted in the impossibility of arranging natural onto-
genetic series within the species under study. Therefore, an interesting experiment
was executed. The individual growth degrees of the holotype of Polidevcia hrebnickii
Ruzi¢ka—Bojkowski (right valve) were drawn according to the individual
growth lines. On the whole, twenty four outlines corresponding to the successive
growth degrees of the studied specimen were obtained.

These growth degrees can be grouped into three or four ontogenetic stages which
are called preliminarily the brephic, neanic, ephebic and gerontic
stage. ;

The first, ontogenetically youngest brephic stage corresponds to the
holometric degrees in which the formation of the characteristic rostrum did not
yet take place. It may be called prerostral stage as well. This stage
corresponds to the growth degrees 1—6 of the specimen under study.

The next, neanic stage, corresponding to the growth degrees 7—8, is
characterized by the allometric tendency to form a rostrum and, therefore, it may
be called initial rostral stage as well

The ephebic stage, beginning by the growth degree 9, represents the
ontogenetic stage in which the formation of the rostrum becomes already a dominant
character. Consequently, it may be also called the rostral stage (seefig. 1).

The final, gerontic stage is a senil stage representing a reduction of the
general growth rate of the valve.

The mentioned ontogenetic stages of the valve of Polidevcia hrebnickii need not
correspond (but probably do) to the simultaneous ontogenetic development of the
soft part of the body.

On the presumption that these ontogenetic stages and their individual growth
degrees correspond to the recapitulation of the phylogenetic development. we can
deduce that the nuculanid forms of pelecypods passed in the course of their develop-
ment through a stage in which the formation of the rostrum did not yet take place
and, consequently, that they originate in some morphologically different ancestral
forms. . :
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Farthermore, we do not exclude the possibility that the beginning of the tendency
to form a rostrum was caused by the changes of genetical character under the
influence of altered ecological conditions.

On the specimen which was drawn and divided into the individual growth degrees
according to the prominent morphological course of the outline, we tried to verify
as to what extent the statistical biometrical methods, used several times by us,
are able to express these changes (RtzZi¢ka, B.—Prantl, F. 1958, 1959,
1960).

Therefore, the anterior and posterior extreme point and the valve height were
determined in all growth degrees, which were enlarged at a constant ratio.

First of all the v/l ratio was studied, in which [ is the parameter VP (highest
point of the beak—anterior extreme point) plus the parameter VZ (highest point
of the beak—posterior extreme point); v is the height of the valve. The measured
values were plotted into a graph (fig. 2), from which it is evident that they demon-
strate a strong rectilinearity. Rectilinear regression formulae were computed for
these points (tab. I) and plotted into the graph. TFrom all that was stated above
it can be presumed that the different growth degrees of the same species treated
by the above described method are linearly related. '

Furthermore, the relation between v and d was studied, d being the connecting

line of ZP and v the height of the valve. This relation was also plotted into a graph
(fig. 3). The result was a system of points, through which a single straight line
could not be drawn. By the computed rectilinear regression formulae (tab. 2a, b, c)
it was ascertained that the points 1—7 (the numbers also denote the individual
growth degrees), 7—18 and 18—24 lie nearly precisely on straight lines of different
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slopes. The statistical comparison of these three series can be carried out on the
assumption that each of them is taken for an individual statistical sample.

In comparing the. differences between the regression coefficients of each two
samples and the determinative deviation of the correlation coefficients, it becomes
evident that the differences between the samples are statistically significant. (In

db db
the samples 1—7and 7—18 = = 16,02; in the samples 7—18 and 18—24 == = 5,126,
b db
db being the difference between the regression coefficients of the two samples and
ogp the determinative deviation of the two correlation coefficients). From what
was stated above the following conclusion can be drawn:

If an author used this method for a number of valves of deferent sizes, which
represent different ontogenetic stages of the studied species (it should be noted
that to date this is the usual procedure in the study of pelecypods), he would find
mathematical proof that these forms are not conspecific, while the 0pp0s1te is the
thruth.

Likewise, the relation between » and z was studied, z being equal to VZ and v
being the height of the valve. In this case a system of points, (fig 4), through which
a single straight line cannot be drawn, is also obtained. As in the preceding case,
here too three straight lines can be fixed at the same intervals. The statistical
comparison of these three series can be carried out on the precondition that each
of them is taken for an individual sample (tab. 3a, b, ¢). In comparing the differences
between the regression coefficients of each two samples and the determinative
deviation of the eorrelation coefficients, it was found that the differences between indi-

; : , b
vidual samples are statistically significant. (In the sample 1—7 and 7—18 = 13,68;
db
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Fig. 4

in the samples 7—18 and 18—24%) = 7,33, in the samples 1—7 and 18—24 gb = 5,24,
: b
Consequently, the same conolusior(i as in the preceding case can be drawn.

Further, the growth regularity of the individual ontogenetic stages was studied in
relation to the height and length of the valve. Anarbitrary length of growth proces-
ses of a specimen divided into 24 intervals, which represent the succesive growth degre-
es, was taken as the basis. When evaluating the increase in the height according to
the individual growth degrees, the course of the 4 polygons of the heights can be
rather accurately substituted by the straight line B (fig. 5), the slope of which has
the value of £ = 0,182 and the intercept on Y-axis, chosen by the fourth growth
degree, ¢ = 11,0. Consequently, we obtain a straight line, the equation of which is:

y=0,182z + 11 for1 < x < 24

A greater deviation of the 4 polygon of the heights from the course of the
substituting straight line B exists in the interval between the tenth and the fourteenth
growth degree. However, it is typical of this interval as an intercept that its slope
k¥ = 0,176, which is consequently very close to the slope of the substituting straight
line. From this it is evident that the accuracy of the course of the substituting
straight line is only slightly changed by the mentioned deviation.

When evaluating the increase of the length in individual growth degrees we can
rather accurately substitute the polygon C of‘the lengths by the exponential function
D (fig. 5), the common formula of which is
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Fig. 5

Y =a.e* (1)

where a, « are the convenient constants. In order to determine these constants
equation (1) will be modified as follows:

logy =loga 4+ «.x.loge (2)

Consequently, after the logarithmic calculation of equation (1) a straight line is
obtained which does not pass through the origin and its graph is then constructed
on corresponding graphical paper (fig. 6).
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As becomes evident from the original graph (fig. 5) as well as from the mentioned
representation of the exponential function by the straight line & (fig. 6), the length
increases in the course of the growth degrees 1—3 more slowly than it is shown by the
course of the exponential function. Inthe growth degrees 15—19, however, a certain
small difference in the growth appears, the length increasing somewhat more rapidly
than according to the exponential function (1), in the growth degrees 21—24 again
a little more slowly.

These differences can be in our opinion explained in the following way: If we
suppose that the animal under study lived throughout its life in the same ecological
conditions, we can explain the mentioned definitions of the growth of the length so
that in the first to third growth degree (or even further, in the fourth to sixth) the
genetic tendency to form a rostrum did not yet appear in the protoconchal stage
of the valve, consequently, these growth degrees still appear generically and
specifically indifferent. A evidence of a systematical position appears only when the
prerostral stage is over and the genetic tendency to form a rostrum is evident. From
this moment the time of adolescence sets in, demonstrating itself in the rapid deve-
lopment of the typical shape of the valve, which is probably coincident with the sexual
maturity. This appears in our graph as a second difference (which means that the
length increase is more rapid than the course of the theoretical exponential function).
This growth stage seems to terminate in the eighteenth growth degree. From this
degree the growth of the length shows a decreasing tendency, the course of the
polygon intersecting the substituting exponential function approximately in the
twentieth growth degree, after which the growth of the length continues to proceed
more slowly than is supposed by the substituting exponential function. This last
difference is in our opinion due to the passage of the individual into the gerontic
stage. It is interesting that the division of the sequence of 24 growth degrees into
4 stages became apparent also in the study of v/d and v/z ratio by means of the
regression lines with rather corresponding boundaries.

The difference on the course of the two relations C' and D in the fourth, fifth and
sixth growth degree can be neglected, as the connecting line of the degrees 4, 5 and 6
has the same curvature as the exponential function (1) which runs for these values
of the independent variable .

In all remaining growth degrees the length increases rather accurately according
to the exponential function (1), so that the interval from the fourth to twenty
fourth degree can be taken for the basis, being very suitable for the appreciation
of this growth.

The slope of the straight line £ which represents the exponential function (1) on
the corresponding graphical paper has the value

k= 0,134.

For the intercept ¢ of the straight line £ on the Y-axis chosen by the fourth
growth degree the value ¢ = 21,5 is obtained.
In order to calculate the constants a, « of equation (1) let us denote
n=my.logy, &=m.uz,
where mi, me are the scale coefficients of the graphical papers by substitution
into equation (2) we get
Ui

&
— =0.l =41
- o og e -y og a,
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n =%.zx.loge..§ + m, . log a,
my
consequently the equation of a straight line:

n==k.&+q,
my
where k= i 2 log e = 0,134, (3)
. 1
q = mylog a = 21,5. (4)
- From equation (3) we obtain
0,134
T 40.0434 00077,
from equation (4) we receive
a = 3,45.

Owing to the basic lengths of the intervals of individual growth degrees being
selected for the graphical representation on fig. 5 quite arbitrarily, it is necessary
to coordinate the sizes of the units of the independent variable values of x with the
values of the function (in our case a given empirical function) by means of the
coefficient ms by which the constant a is multiplied; in our case ms = 5 is convenient.
This will be ascertained e. g. by the following way: the mean value of the functional
values is y = 51; the size of the length in the fourteenth growth degree correponds
to this value. The functional value of the exponential function

y = 3,45 . 00071z

if # = 14 then y = 10,1, therefore the ratio of the sizes of the units is really ms = 5.
The exponential function (1) receives consequently its final expression

y = 17,25. 0007 for 4 < x < 24. (5)

The graphical representation of the H function (5), which now also means the
ratio of the sizes of the units of the growth degrees and of the sizes of the lengths,
is reproduced in fig. 7.

In order that the constant @ = 17,25 beused in equation (5) the intercept of the
straight line ¢, which on the corresponding graphical paper represents function (5),
must according to equation .(4) equal:

g = me.loga =40.1,2367 = 49,5

Now the polygon G is constructed from the sizes of the lengths in the scale adapted
by the coefficient ms = 5 (fig.7) and ‘at the same time exponential function (5) is
converted into a straight line (straight line F' on fig. 6). We will find that the straight
line F' runs parallel -with the straight line K, representing the basic exponential
function, consequently both straight lines have the same slope; straight line F
intersects the Y-axis at the end point of the intercept ¢; by measuring it is found
that this intercept is approx1mately equal to the computed intercept. Therefore,
the value of the coefficient ms = 5 is right.

Owing to what was ascertained above it can be stated that while the increase
of the heights » in the individual growth degrees proceeds in an arithmetical progres-
sion, as the curve expressing this development is a straight line, the increase of the
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lengths d proceeds in a geometrical progression, because the curve expressing this
relation is an exponential function, and the values x of the growth degrees proceed
in an arithmetical series. This can be generally expressed as follows:

Let the value of the height » in the first growth degree be denoted 1, the corres-
ponding value of the length d in the first growth degree di.

Then the arithmetical progression of the growth degrees is

r=2, @ +c, BpF2, 0000000 x, Fn.c
where c is the difference of the progressioﬁ_. From the equation

rT=x +Mn.cC
we obtain :
x——xI. » (6)

n = -
c
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The exponential function will be expressed by the simplest general form:
d=A.¢. (7)

On the assumption that the lengths d,, increase according to a geometrical progression, -
the individual values of the lengths form the progression

d=d;, d,.p, d.P%,.......... d, . p",

where p is the quotient of the progression. If we introduce equation (6) into the
formula

d=d,.p*
we geb

. ( Lyx
d=d, .p°. pc);
if we lay
x1 1

dl.p??=A, p?=q

we do get the exponential function (7).

In the course of a continuous growth in a homogenous environment the increase
of the height would proceed in an arithmetical series with the difference » = 1.88,
where 7 is the mean value of all differences which vary within the interval

07<r<40

This progression P, is presented on pl. 4 for the growth degrees n = 1 to n = 24
and compared with the measured values of the heights (in the third row). The
progression P, is arranged according to the last member.

Under the above mentioned conditions of the growth the increase of the length
d would proceed in a geometrical progression with a quotient ¢ = 1.08, where ¢ is
the mean value of all quotients which vary within the 1nterval (the initial three
degrees were not taken in account)

1,02 < ¢ <1,16

This progression of the lengths P, is demonstrated on table 5 for n = 4 to n = 24.
In the third row of the table are the measured. values of the lengths d, in the fourth
row the values Fy of the substltutmg exponential function (5) and in the second
row the geometrical progression of the lengths P4. The progression Pg is arranged
according to the member for » = 11, because the measured length di1 is here nearly
identical with the length computed from the substituting function (5) for n = 11.

The course of the curve D on fig. 5 and of the curve H on fig. 7 is rather similar
to the general parabolic function of the type
y=a.zx",

However, the increase of the lengths in the individual growth degrees does not
proceed according to the parabolic function, as after the logarithmic calculation of
this function we obtain ‘
logy =loga +n .logx ,
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consequently a straight line of the expression

n=mn.f-+lga,
which does not agree with the graphical representation of the values of the length
of the growth degrees presented on the corresponding graphical paper (fig. 8).
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Fig. 8

Likewise, the parabolae of the type

y=a-. (.%‘ - xo)ﬂ
may be excluded. :

Conclusion

To date it cannot be stated as to what extent the different characters of the growth
of the lengths and heights of nuculanid shells can serve as a guide for specific differ-
enciation. Only further studies will prove how this character can be applied in the
biometrical studies of the nuculanid assemblages.
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Table 1

n } l ) & 7 E.n &2 7
1 14,40 5,40 43,92 20,68 908,26 1928,96 427,66
2 18,70 7,30 39,62 18,78 744,06 1 569,74 352,68
3 21,90 9,50 36,42 16,58 603,84 1326,41 274,89
4 25,90 11,60 32,42 14,48 469,44 1 051,05 209,67
b 28,00 12,50 30,32 13,58 411,74 919,30 184,41
6 31,00 14,50 27,32 11,58 316,36 746,38 134,09
7 35,50 16,80 22,82 9,28 211,76 520,75 86,11
8 38,50 17,50 19,82 8,568 170,05 392,83 73,61
9 41,90 19,00 16,42 7,08 116,25 269,61 50,12
10 42,80 20,50 15,562 5,58 86,60 240,87 31,13
11 47,70 22,00 10,62 4,08 43,32 112,78 16,64
12 52,00 23,50 6,32 2,568 16,30 39,94 6,65
13 56,50 25,00 1,82 1,08 1,96 3,31 1,16
14 59,00 26,50 0,68 0,42 0,28 0,46 0,17
15 67,50 | 30,50 9,18 4,42 40,57 84,27 19,63
16 73,90 32,50 15,58 6,42 100,02 242,73 42,21
17 78,40 34,00 20,08 7,92 139,03 - 403,20 62,72
18 82,50~ 36,00 24,18 9,92 239,86 584,67 98,40
19 85,20 38,00 26,88 11,92 320,40 722,53 142,08
20 89,00 40,00 30,68 13,92 427,06 941,26 193,76
21 94,10 42,00 35,78 15,92 569,61 1 280,20 253,44
22 99,40 45,00 41,08 18,92 777,23 1 687,56 357,96
23 104,00 47,40 45,68 21,82 973,89 2 086,66 454,54
24 112,00 49,00 53,68 22,92 1 230,34 2 881,54 525,32
X 1 399,80 ‘ 626,00 8 938,23 20 037,01 3 997,95
> 58,32 26,08 834,87 166,58
“ _4
n
o = 28,88 ; o = 12,90
Kip» = 0,999
byt = 2,216
by = 0,442

v = 0,442.1 + 0,42

I = 22160 + 0,43
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Table 2a

70

" d v & 7 &y &2 ! 7
1 12,50 5,40 7,70 5,68 43,73 59,29 32,26
2 15,80 7,30 4,40 3,78 16,63 19,36 14,28
3 17,80 9,50 2,40 1,58 3,79 5,76 2,49
4 21,50 11,60 1,30 0,52 0,67 1,69 0,27
5 22,00 12,50 1,80 1,42 © 92,55 3,24 2,01
6 24,00 14,50 3,80 3,42 12,99 14,44 11,69
7 27,80 16,80 7,60 5,72 43,47 57,76 32,71
x 141,40 77,60 123,83 : 161,54 95,71
.34
o= A1 20,20 11,08 23,07 13,67
. od = 4,804 ; oy = 3,697
Ky = 0,996
v =0,766 . d — 4,39
bpd = 1,294 -
bagy = 0,766
Table 2b
n a v & n & & nt
1 27,80 16,80 20,82 8,51 177,17 433,47 72,42
2 31,00 17,50 17,62 7,81 137,61 310,46 60,99
3 33,00 19,00 15,62 6,31 98,56 243,98 39,81
4 36,20 20,50 12,42 4,81 59,74 154,25 23,13
5 40,50 22,00 8,12 3,31 26,87 65,92 10,95
6 43,90 23,50 4,72 1,81 8,54 22,27 3,27
7 48,80 25,00 0,18 0,31 0,05 0,03 0,09
8 51,50 26,50 2,88 1,19 3,42 8,29 1,41
9 60,00 30,50 11,38 5,19 59,06 129,50 26,93
10 65,80 32,50 17,18 7,19 123,52 295,15 51,69
11 70,00 34,00 21,38 8,69 185,79 457,10 75,51
12 75,00 36,00 26,38 10,69 282,00 695,90 114,27
=z 583,50 303,80 1162,33 21816,33 480,47
1z
e A| 48,62 25,31 234,69 40,03
od = 15,320 ; oy = 6,326
Kay = 0,999
byd = 2,419 v=0,412.d + 528
bdv = 0,412



Table 2¢

n d v & 7 §.m & 4
1 75,00 36,00 11,00 6,48 71,28 121,00 41,99
2 76,50 38,00 9,50 4,48 42,56 90,25 20,07
3 81,00 40,00 5,00 2,48 12,40 25,00 6,15
4 85,00 42,00 1,00 0,48 0,48 1,00 0,23
5 90,00 45,00 4,00 2,52 10,08 16,00 6,35
6 94,00 47,40 8,00 4,92 39,36 64,00 24,20
7 100,50 49,00 14,50 6,52 94,54 210,25 42,51
z 602,00 297,40 270,70 527,50 141,50
2
= A 86,00 42,48 75,35 20,21
od = 8,680 ; gy = 4,496
Kdv = 0,991
byd = 1,913 v=0,613.d— 1,64
bdo = 0,513
Table 3a
n 2 ) & 7 E.n & 7?
1 7,90 5,40 5,88 5,68 33,39 34,57 32,26
2 10,20 7,30 3,58 3,78 13,563 12,81 14,28
3 12,00 9,50 1,78 1,68 2,81 3,16 2,49
4 14,50 11,60 0,72 0,52 0,37 0,51 0,27
5 15,10 12,50 1,32 1,42 1,87 1,74 2,01
6 17,00 14,50 3,22 3,42 11,01 10,36 11,69
7 19,18 16,80 6,02 5,72 34,43 36,24 32,71
b4 96,50 77,60 97,41 99,39 95,71
.3
—= A4 13,78 11,08 14,19 13,67
oz = 3,766 ; oy = 3,697
sz = 0,999
v = 0,980 .z — 2,42
bvz = 1,017
z = 1,017.v + 2,51
bzo = 0,980 )
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Table 3b

n z v & 7 E.y &2 n?
1 19,80 16,80 15,46 8,51 131,56 239,01 72,42
2 22,00 17,50 13,26 7,81 103,56 175,82 60,99
3 24,90 19,00 10,36 6,31 65,37 107,32 39,81
4 26,60 20,50 8,66 4,81 41,65 74,99 23,13
5 28,50 22,00 6,76 3,31 22,37 45,69 10,95
6 31,00 23,50 4,26 1,81 7.71 18,14 3,27
7 34,50 25,00 0,76 0,31 0,23 0,57 0,09
8 37,00 26,50 1,74 1,19 2,07 3,02 1,41
9 44,00 30,50 8,74 5,19 45,36 76,38 26,93
10 48,50 32,50 13,24 7,19 95,19 175,29 51,69
11 51,90 34,00 | 16,64 8,69 144,60 276,88 75,51
12 54,50 36,00 19,24 10,69 205,67 370,17 114,27
z 423,20 303,80 i 865,34 1563,28 480,47
5 .
n =4 35,26 25,31 130,27 40,03
oz = 11,413 ; oy = 6,326
Kzqa = 0,998
byz = 1,800 v = 0,633.d + 5,82
bzo = 0,553
Table 3¢
n z v & 7 &.n &2 Uk
1 54,50 36,00 7,87 6,48 50,99 61,93 41,99
2 56,40 38,00 5,97 4,48 26,74 35,64 20,07
3 59,00 © 40,00 3,37 2,48 8,35 11,35 6,15
4 62,00 42,00 0,37 0,48 0,17 0,13 0,23
5 64,50 45,00 2,13 2,62 5,36 4,53 6,35
6 68,20 47,40 5,83 4,92 28,68 33,98 24,20
7 72,00 49,00 9,63 6,52 62,78 92,73 42,51
z 436,60 297,40 183,07 240,29 141,50
X
"o A 62,37 42,48 34,32 20,21
6z = 5,859 ; op = 4,496
Kzp = 0,993
byz = 1,294
_ v = 0,762 . z — 5,04
bz = 0,762
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Table 4

n

14

20

24

18,92

17,5

20,80

19,0

30,20

41,48

26,5

40,0 | 42,0

49,00

49,0

Table 5

11

12

16

21

24

40,560

43,74

59,48

64,23 87,36

110,03

40,6

43,9|

65,8

85,0

100,5

8L

“Pv

N
n 4
Pd | 23,63
d | 21,5
Fd | 23,4

40,3

43,5

59,2

87,0




