Britolit-(Y): neskoromagmatický akcesorický minerál Y-REE z granitu A-typu v Stupnom pri Považskej Bystrici, Pieninské bradlové pásmo (severozápadné Slovensko)

Britholite-(Y): a late-magmatic, Y-REE-bearing accessory mineral from A-type granite in Stupné near Považská Bystrica, Pieniny Klippen Belt, north-western Slovakia

PAVEL UHER¹⁾ A MARTIN ONDREJKA²⁾

¹⁾ Katedra ložiskovej geológie, Prírodovedecká fakulta, Univerzita Komenského, Mlynská dolina G, 842 15 Bratislava, Slovenská republika

²⁾ Katedra mineralógie a petrológie, Prírodovedecká fakulta, Univerzita Komenského, Mlynská dolina G, 842 15 Bratislava, Slovenská republika

UHER P., ONDREJKA M. (2008): Britolit-(Y): neskoromagmatický akcesorický minerál Y-REE z granitu A-typu v Stupnom pri Považskej Bystrici, Pieninské bradlové pásmo (severozápadné Slovensko). - *Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha)* **16/2**, 224-229. ISSN: 1211-0329.

Abstract

Accessory britholite-(Y), $(Y,REE,Ca,Th)_5(SiO_4,PO_4)_3(F,OH,O)$, forms 30 µm large inclusion in quartz from Permian A-type granite pebble in Cretaceous flysch sequence of the Pieniny Klippen Belt, Western Carpathians, Slovakia. Britholite shows compositional zoning with variable REE/Ca ratio (6 to 26 mol. % of apatite end-member) and 0.40 - 0.47 *apfu* F. (Y,REE)SiCa_1P_1 is the main substitution mechanism in the mineral. It contains 2.6 - 4.7 wt. % ThO_2 (0.07 - 0.13 *apfu* Th), the highest Th contents yet reported in naturally occurring britholite-(Y). Textural and compositional data indicate their origin by alteration and partial replacement or overgrowth of primary apatite in late-magmatic, fluid-rich conditions.

Key words: britholite-(Y), REE, A-type granite, Pieniny Klippen Belt, Slovak Republic

Úvod

V rámci štúdia akcesorických minerálov prvkov vzácnych zemín (REE) v granitoch A-typu bola zistená REE-Ca-Si-P fáza z valúnu biotitického granitu v zlepencovej polohe flyšovej sekvencie Pieninského bradlového pásma pri obci Stupné (sz. Slovensko). Fáza bola identifikovaná pomocou elektrónovej mikrosondy ako britolit-(Y) (v českom jazyku britholit), so všeobecným vzorcom (Y,REE,Ca,Th)₅(SiO₄,PO₄)₃(OH,F), člen izomorfného radu britolit - apatit, Ca₂(Y,REE)₃(SiO₄)₃(OH,F) - Ca₂Ca₃(PO₄)₃(OH,F). Príspevok prináša základnú mineralogickú charakteristiku tohto pomerne vzácneho minerálu Y a prvkov vzácnych zemín (REE) na uvedenej lokalite.

Lokalizácia a geologická charakteristika

Britolit-(Y) bol identifikovaný v cca 20 cm veľkom valúne granitu v opustenom malom stenovom kameňolome tesne nad obcou Stupné, cca 800 m/210° od kóty Žeravica (527.3 m n. m.), približne 8.5 km severne od mesta Považská Bystrica na severozápadnom Slovensku. Zemepisné súradnice lokality sú nasledovné: 49°11'39" severnej zemepisnej šírky, 18°26'05" východnej zemepisnej dĺžky, nadmorská výška okolo 385 m n. m.

Na lokalite je odkrytá poloha kriedových zlepencov, ktorá je súčasťou flyšovej sekvencie pieninskej, resp. klapskej jednotky Pieninského bradlového pásma. Valúnový materiál zlepencov na lokalite Stupné je tvorený 49.8 - 58.3 % karbonátov (vápence a dolomity), 12.8 - 15.9 % klastogénnych sedimentárnych hornín, 22.5 - 33.0 % vulkanických hornín (ryolity, bazalty), 2.1 - 2.4 % intruzívnych hornín (granity a granitové porfýry) a 1.2 - 2.0 % metamorfovaných hornín (Marschalko 1986).

Analytické metódy

Britolit-(Y) bol študovaný v leštenom výbruse pomocou metódy spätne rozptýlených elektrónov (BSE) a vlnovo-disperznej elektrónovej mikroanalýzy na prístroji CAMECA SX-100 v Štátnom geologickom ústave Dionýza Štúra v Bratislave. Bodové mikroanalýzy boli získané pri urýchľovacom napätí 15 kV, vzorkovom prúde 20 a 40 nA, priemere elektrónového lúča 1 - 2 µm a meracom čase 20 a 50 s. Boli použité nasledovné syntetické a prírodné štandardy: apatit (P K α), GaAs (As L α), wollastonit (Si K α , Ca K α), ThO₂ (Th M α), UO₂ (U M β), YPO₄ (Y L α), LaPO₄ až LuPO₄ (La L α - Lu L β), fayalit (Fe K α), PbS (Pb M α) a BaF₂ (F K α). Obsahy ostatných prvkov (S, Zr, Al, Sc, Mn, Mg, Sr, Ba, Na, K, Cl) boli pod medzou detekcie merania. Detekčné limity meraných prvkov boli 0.03 - 0.12 hmot. %, štatistická chyba merania bola v intervale 0.02 - 0.15 hmot. % (1 o) v závislosti od koncentrácie prvku. Namerané údaje boli normalizované korekciou PAP. Na minimalizovanie prekryvov REE boli použité empirické korekčné faktory.

Kryštalochemické vzorce britolitu-(Y) boli vypočítané na základe sumy 13 aniónov 12 O + OH + F = 1 atóm, čo zodpovedá počtu atómov týchto prvkov na 1 vzorcovú jednotku (*apfu*).

Charakteristika horniny

Britolit-(Y) bol identifikovaný v strednozrnnom biotitickom granite upohlavského typu (Uher et al. 1994; Uher, Broska 1996), ktorý na základe planimetrickej analýzy obsahuje 34.3 obj. % kremeňa, 37.0 obj. % K-živca, 23.5 obj. % plagioklasu, 4.9 obj. % biotitu a 0.3 obj. % akcesorických minerálov. Hornina má všesmernú textúru a hypidiomorfne zrnitú štruktúru, je rovnomerne zrnitá, lokálne s nevýrazne porfyrickým vývojom.

Kremeň tvorí xenomorfné, zväčša intersticiálne jedince veľkosti 0.15 - 1 mm, lokálne sa vyskytuje v podobe drobných hypidiomorfných až idiomorfných inklúzií v Kživci (vysokoteplotný β-kremeň). Draselný živec vytvára hypidiomorfné až idiomorfné perthitické jedince, často zdvojčatené podľa karlovarského zákona, s veľkosťou 0.2 - 3 mm. Na základe mikrosondových analýz ide o Kživec s jasnou prevahou ortoklasovej zložky (Or₈₂₋₉₆Ab₀₄₋₁₈ An₀₀₋₀₁). Hypidiomorfný až takmer idiomorfný plagioklas, 0.5 - 4.5 mm veľký, je polysynteticky lamelovaný podľa albitového zákona, často silne sericitizovaný. Na základe mikrosondových analýz ide o takmer čistý albit (Ab₉₂₋₉₉ An₀₁₋₀₈Or₀₀₋₀₁). Biotit vytvára xenomorfné až hypidiomorfné jedince a agregáty, 0.1 - 2 mm veľké, v interstíciach kremeňa a živcov. Biotit má v rovnobežných polaroidoch žltozelenú až tmavozelenú, resp. zelenohnedú farbu; chemicky ide o annit, vysokoželeznatý biotit s atómovým pomerom Fe_{tot}/(Fe_{tot}+Mg) = 0.80 - 0.95 (Uher, Broska 1996). S biotitom vystupuje akcesorický sekundárny epidot-klinozoisit v podobe xenomorfných až hypidiomorfných zhlukov do 0.3 mm veľkých.

Zirkón vytvára drobné idiomorfné prizmatické, 0.02 -0.1 mm veľké kryštály v biotite, vzácnejšie v živcoch. Na základe typologickej analýzy ide najmä o zirkón typu D a subtypu P₄₋₅, typický pre vysokoteplotné alkalické prostredie (Uher, Marschalko 1993). Idiomorfný allanit-(Ce) vytvára kryštály do 0.6 mm, so silným pleochroizmom, zarastené v biotite, živcoch a kremeni. Opakné oxidy Fe-Ti (ilmenit a magnetit) sa vyskytujú v podobe xenomorfných až idiomorfných inklúzií v biotite, resp. spolu so zirkónom v K-živci. Vzácne boli identifikované drobné bezfarebné prizmatické kryštály apatitu a hexaédrické, lokálne goethitizované kryštály pyritu. V trhlinách a okrajových zónach allanitu-(Ce) bol identifikovaný sekundárny synchyzit-(Ce) v podobe maximálne 0.2 mm veľkých agregátov ihličkovitých kryštálov (Uher 2004). Geochemicky sa valún granitu zo Stupného vyznačuje vysokými obsahmi Si, K, Y, REE, Zr, Nb, Fe/Mg, Ga/Al, Rb/Sr a nízkymi obsahmi Ti, Al, Mg, Ca, P, Sr, Ba a V, teda typickými znakmi postorogénnych granitových suít A-typu, čo potvrdzuje aj minerálna paragenéza a charakter zirkónu a biotitu (Uher, Marschalko 1993; Uher et al. 1994; Uher, Broska 1996).

Postorogénne granity upohlavského typu vznikali v extenznom (riftogénnom) tektonickom prostredí v čase posthercýnskej konsolidácie, izotopické U-Pb datovanie zirkónu indikuje jeho permský vek (274 ± 13 Ma, Uher, Pushkarev 1994; resp. 264 ± 3 Ma; Uher, Ondrejka - nepublikované údaje).

Charakteristika britolitu

Britolit-(Y) bol vo valúne granitu zo Stupného identifikovaný len v jednom prípade, a to v podobe cca 30 x 10 µm veľkej inklúzie v kremeni (obr. 1A). V režime spätne rozptýlených elektrónov (BSE) má britolit-(Y) nevýraznú koncentrickú zonalitu, spôsobenú rastom pomeru REE/ Ca, v centrálnej časti obsahuje inklúziu apatitu (obr. 1B). Jasná prevaha Y nad ostatnými prvkami vzácnych zemín $(1.04 - 1.28 apfu Y) \le 0.43 apfu Ce a ostatných REE), ako$ aj silná prevaha Y+REE nad Ca, ako aj Si nad P, umožňujú klasifikovať minerál ako britolit-(Y), člen izomorfného radu britolit - apatit s dominantnou heterovalentnou substitúciou (Y,REE)³⁺ + Si⁴⁺ = Ca²⁺ + P⁵⁺, resp. (Y,REE)SiCa P_1 (tab. 1, obr. 2). Tento substitučný mechanizmus sa dominantne uplatňuje pre tuhý roztok apatit - britolit pri obsahoch Y+REE \leq 3 *apfu* a nižších obsahoch ďalších prvkov v štruktúre minerálu (najmä Na, Fe, Mn, Sr, Ba). V opačnom prípade prevládnu iné substitučné mechanizmy (Pan, Fleet 2002), čo sa prejaví odklonom analýz od ideálnej línie (Y,REE)SiCa_1P_1 (obr. 2).

Na základe uvedenej dominantnej substitúcie možno vypočítať zastúpenie hlavných koncových členov: britolitu (Brt) - $Ca_2(Y,REE)_3(SiO_4)_3(OH,F)$ a apatitu (Ap) - $Ca_2Ca_3(PO_4)_3(OH,F)$, na základe vzťahov: Brt (mol. %) = 100*(Y+REE)/3, resp. Ap (mol. %) = 100*[3-(Y+REE)]/3 (1), resp. Brt (mol. %) = 100*Si/(Si+P), resp. Ap (mol. %) = 100*P/(Si+P) (2), kde REE = La + Ce + ...+ Lu +Y a všetky hodnoty prvkov sú v *apfu*. Keď porovnáme oba spôsoby výpočtu koncových členov, dostaneme veľmi podobné výsledky (± 1 mol. %), s výnimkou analýzy BP-2.3 s rozdielom cca ± 4 mol. %, čo je spôsobené najmä vyššími obsahmi Th a vakancií v pozícií *A1*, resp. *A2*,

Obr. 1 BSE mikrofotografie britolitu-(Y) z lokality Stupné. A: britolit-(Y) s inklúziou apatitu v kremeni; B: celková paragenéza. Vysvetlivky: britolit (Brt), apatit (Ap), kremeň (Qtz), albit (Ab), K-živec (Kfs). Foto D. Ozdín.

Tabuľka 1 Chemické zloženie britolitu-(Y) z lokality Stupné

	Oxidy v hm		Vzorce prepočíta	Vzorce prepočítané na 13 aniónov: 12 O + 1 (OH+F)			
	BP-2.1	BP-2.2	BP-2.3		BP-2.1	BP-2.2	BP-2.3
P ₂ O ₅	7.75	7.15	1.75	Р	0.761	0.708	0.183
As ₂ Ŏ ₅	0.04	0.07	0.12	As	0.002	0.004	0.008
SiÔ	19.17	19.56	22.92	Si	2.224	2.288	2.823
ZrO,	0.05	0.00	0.00	Suma T	2.987	3.000	3.014
ThO	2.68	2.57	4.66				
UO,	0.48	0.44	0.85	Zr	0.003	0.000	0.000
$Y_2 O_3$	16.88	16.99	19.46	Th	0.071	0.068	0.131
Lā,Ŏ,	1.19	1.92	2.83	U	0.012	0.011	0.023
Ce,O,	5.61	7.16	9.50	Y	1.042	1.058	1.276
Pr,Ō,	1.32	1.27	1.62	La	0.051	0.083	0.129
Nd ₂ O ₃	6.70	6.34	6.18	Ce	0.238	0.307	0.428
Sm,O,	2.86	2.31	1.74	Pr	0.056	0.054	0.073
Eu Ô	0.00	0.00	0.08	Nd	0.278	0.265	0.272
Gd ָO	4.04	3.22	2.37	Sm	0.114	0.093	0.074
Tb,Ô,	0.59	0.51	0.42	Eu	0.000	0.000	0.003
Dy ₂ O ₂	3.75	3.10	2.77	Gd	0.155	0.125	0.097
HoJO	0.68	0.45	0.70	Tb	0.022	0.020	0.017
Er , Ô ,	2.03	1.81	2.15	Dy	0.140	0.117	0.110
Tmĺ,Ŏ,	0.32	0.36	0.41	Ho	0.025	0.017	0.027
Yb JO	1.09	1.21	1.98	Er	0.074	0.067	0.083
Lu,Ô,	0.23	0.44	0.36	Tm	0.012	0.013	0.016
FeÔ	0.77	0.63	0.92	Yb	0.039	0.043	0.074
CaO	20.21	20.00	14.66	Lu	0.008	0.016	0.013
PbO	0.07	0.07	0.04	Fe	0.075	0.062	0.095
H ₂ O *	0.69	0.77	0.70	Са	2.512	2.507	1.935
F	1.27	1.07	1.09	Pb	0.002	0.002	0.001
O=F	-0.53	-0.45	-0.46	Suma A1+A2	4.929	4.928	4.877
Suma	99.94	98.97	99.82	OH	0.534 0	0.604 0	.575
Prepočet koncových členov (mol. %):			_F	0.466	0.396	0.425	
Britolit (1)	75.1	75.9	89.7	Suma X	1.000	1.000	1.000
Apatit (1)	24.9	24.1	10.3	Suma aniónov	12.534	12.604	12.575
Britolit (2)	74.5	76.4	93.9	Suma Y+REE	2.254	2.278	2.692
Apatit (2)	25.5	23.6	6.1	Si/(Si+P)	0.745	0.764	0.939
* Obsahy H ₂ O vypočítané na základe (F+OH) = 1 apfu							

Ca2REE3(SiO4)3(OH,F) Stupné 1,0 REE)Si Ca 0,8 □ Harvey Oka Si/(Si+P) apfu Δ 0,6 0.5 Britolit ▲ Lovozero 0,4 △ Chibiny Apatit 0,2 Ca₂Ca₃(PO₄)₃(OH,F) Vico 1 O Vico 2

0.0

0,0

0,2

0,4

(Y+REE)/(Y+REE+Ca) apfu

 Suishoyama Reiarsdal O Mt. St-Hilaire Rouma Island Shonkin Sag Vezuv ▲ Eden Lake

Obr. 2 Chemické zloženie britolitu-(Y) z lokality Stupné v porovnaní s britolitom-(Y) a apatitom - britolitom-(Ce) z iných svetových lokalít (atómové obsahy): Suishoyama (Noe et al. 1993), Reiarsdal (Griffin et al. 1979), Harvey (Payette, Martin 1986), Oka (Hughson, Sen Gupta 1964), Mt. St-Hilaire (Gu et al. 1994), Rouma Island (Oberti et al. 2001), Lovozero (Pekov 2000), Chibiny (Yakovenchuk et al. 2005), Shonkin Sag (Nash 1972), Vico 1 (Della Ventura et al. 1999); Vico 2 (Oberti et al. 2001), Vezuv (Orlandi et al. 1989), Eden Lake (Arden, Halden 1999).

0,6

0,8

1,0

a teda väčšou odchýlkou od ideálnej stechiometrie binárneho izomorfného systému britolit - apatit (tab. 1). Celkovo však možno konštatovať, že britolit-(Y) na lokalite Stupné obsahuje cca 6 - 26 mol. % apatitovej molekuly.

Britolit-(Y) zo Stupného obsahuje 2.6 4.7 hmot. % ThO₂ (0.07 - 0.13 apfu Th), 0.4- 0.9 hmot. % UO, (0.01 - 0.02 apfu U) a 0.6 - 0.9 hmot. % FeO (0.06 - 0.09 apfu Fe). Vo všetkých analýzach mierne prevláda množstvo vypočítanej hydroxylovej skupiny (OH)⁻ nad F⁻, obsahy F dosahujú 1.1 - 1.3 hmot. % (0.40 - 0.47 apfu) - tabuľka 1. Obsahy ostatných prvkov (S, Al, Mn, Sr, Ba, Pb, Na, Cl) sú na hranici detekčného limitu elektrónovej mikrosondy, resp. pod ním.

Obsahy REE v študovanom britolite-(Y), normalizované na hodnoty v chondrite, ukazujú relatívne rovnomerné zastúpenie prvkov ľahkých vzácnych zemín (LREE) voči prvkom ťažkých vzácnych zemín (HREE) a Y, ako aj výrazne negatívnu európiovú anomáliu (obr. 3).

Obr. 3 Normalizované krivky obsahov REE v britolite-(Y) z lokality Stupné v porovnaní s britolitom-(Y) z iných svetových lokalít (hmotnostné obsahy): Reiarsdal (Griffin et al. 1979) a Harvey (Payette, Martin 1986). Hodnoty chondritu podľa Taylor, McLennan (1985).

Diskusia a záver

Nomenklatúra a kryštalochémia skupiny britolitu

Britolit-(Y) bol pôvodne opísaný ako abukumalit podľa výskytu v pohorí Abukuma v Japonsku (Hata 1938). Neskôr bol označovaný aj ako ytrobritolit, resp. ytriová odroda britolitu (Vlasov et al. 1964). Okrem britolitu-(Y) je známy aj jeho cérový analóg, britolit-(Ce), ktorý je synonymom aj pre lessingit a beckelit, pôvodne opísané ako samostatné minerály. Pretože však bola preukázaná štruktúrna a chemická identita lessingitu a beckelitu so skôr opísaným Ce-dominantným britolitom (Gay 1957), jediným doporučeným a platným názvom pre tieto synonymá je britolit-(Ce) (Bayliss 2000). Napriek tomu sa však názvy lessingit a beckelit občas nesprávne používajú aj v novšej literatúre (Bingen et al. 1996; Finger et al. 1998; Strunz, Nickel 2001). Navyše bol opísaný aj fluórbritolit-(Ce), fluórom dominantný člen skupiny britolitu (Gu et al. 1994), hoci viaceré predtým aj neskôr publikované analýzy britolitu-(Ce) a britolitu-(Y) obsahovali prevahu F- nad (OH)⁻ (Nash 1972; Payette, Martin 1986; Noe et al. 1993; Arden, Halden 1999; Oberti et al. 2001).

Skupina britolitu zahŕňa hexagonálne a monoklinické (pseudohexagonálne) silikáty s izolovanými tetraédrami (SiO₄)⁴⁻ (nesosilikáty), ktoré majú analogickú štruktúru ako minerály skupiny apatitu (Oberti et al. 2001; Strunz, Nickel 2001). Uvedená štruktúrna analógia sa prejavuje veľmi podobnými mriežkovými parametrami oboch skupín, ako aj experimentálne potvrdenou neobmedzenou izomorfnou miešateľnosťou (tuhým roztokom) medzi syntetickými koncovými členmi britolitom-(Y) a hydroxylapatitom (Ito 1968). Všeobecný vzorec minerálov izomorfného radu britolit - apatit možno vyjadriť nasledovne (napr. Pan, Fleet 2002): $A1_4A2_6(TO_4)_6X_2$, resp. $A1_2A2_3(TO_4)_3X$, kde jednotlivé štruktúrne pozície najčastejšie zapĺňajú nasledovné prvky: A1, A2 = REE (La - Lu), Y, Ca, Sr, Ba, Mn, Fe, Pb, Na, Th, U; T = Si, P, As, V, C, S; X = OH, F, CI. O.

Prednostné zapĺňanie štruktúrnych pozícií *A1* a *A2*, ktoré obsadzujú katióny s veľkým iónovým polomerom v koordinácií 7 a 9 (6+3) - ^[7]*A*₁ a ^[9]*A*₂ je však pomerne komplikované a nejednoznačné. Hoci výsledky štúdia syntetických a prírodných zlúčenín tuhého roztoku britolit - apatit poukazujú na prednostné obsadzovanie pozície *A1* vápnikom, Sr a Na, a pozície *A2* REE a Y, skutočné obsadzovanie týchto pozícií je komplexnou funkciou štruktúrno-chemických vlastností jednotlivých REE, Y, Ca a ďalších prvkov (Fleet, Pan 1995; Oberti et al. 2001). V bežnej situácií, ak sú k dispozícií len výsledky chemickej analýzy (elektrónovej mikroanalýzy), nie je možné určiť skutočnú distribúciu REE, Y a Ca, takže prepočet kryštalochemického vzorca britolitu - apatitu treba zjednodušiť použitím idealizovaných koncových členov, kde A1 = Ca a A2 = REE + Y, napr. $Ca_2Y_3(SiO_4)_3(OH)$ pre britolit-(Y), resp. Ca₂Ca₃(PO₄)₃(OH), alebo zjednodušene Ca_s(PO₄)₂(OH) pre hydroxylapatit. Aplikáciou uvedenej idealizácie na analýzy britolitu zo Stupného vyplýva, že sa jedná o tuhý roztok s približne 74 - 94 % britolitovej molekuly a 6 - 26 apatitovej molekuly (tab. 1) s dominantnou heterovalentnou substitúciou (Y,REE)³⁺ + Si⁴⁺ = Ca²⁺ + P⁵⁺, resp. (Y,REE)SiCa₁P₁, čo je zloženie porovnateľné s väčšinou iných svetových výskytov tohoto minerálu (obr. 2). Naviac kryštalochemické vzorce študovaného britolitu-(Y) vykazujú deficit katiónov v sume A1 + A2 (4.88 - 4.93 apfu) a indikujú tak možné vakancie v týchto pozíciach (tab. 1). Podobný sumárny deficit katiónov (vakancie) pri analogickom prepočte na 13 aniónov je bežný aj pre britolity z ostatných svetových lokalít, kde A1 + A2 = 4.67 -4.98 (Hughson, Sen Gupta 1964; Nash 1972; Griffin et al. 1979; Payette, Martin 1986; Orlandi et al. 1989; Noe et al. 1993; Gu et al. 1994; Arden, Halden 1999; Pekov 2000; Yakovenchuk et al. 2005). Prítomnosť vakancií v pozíciach A1 + A2 indikujú viaceré substitučné mechanizmy v štruktúre apatitu - britolitu (Pan, Fleet 2002).

Krivky obsahov prvkov vzácnych zemín, normalizované na chondrit (REE_N) sú v britolite-(Y) zo Stupného podobné krivkám z alkalického ryolitu suity Harvey v Kanade (Payette, Martin 1986). V oboch prípadoch tu dochádza k miernemu nárastu v obsahoch ľahkých REE od La_N po Pr_N (Sm_N), výrazne prejavenej negatívnej Eu anomálií (Eu_N) a opätovnému miernemu nárastu normalizovaných obsahov HREE od Gd_N po Yb_N (Lu_N); celkové normalizované obsahy LREE a HREE + Y sú pritom približne na rovnakej úrovni s výnimkou Eu_N (obr. 3). Naproti tomu priebeh normalizovanej krivky REE britolitu-(Y) z pegmatitu Reiarsdal ukazuje výrazný nárast koncentrácií od La, po Lu, bez Eu anomálie (obr. 3). Kryštalizácia britolitu-(Y) v ryolitoch suity Harvey, ako aj granitu zo Stupného odráža kryštalizáciu v magmatickom prostredí pri relatívne vyššom stupni magmatickej frakcionácie a nižšej fugacite kyslíka (výrazne negatívna Eu anomália), avšak bez výraznej vzájomnej frakcionácie medzi LREE a HREE + Y. Krivka REE britolitu-(Y) z pegmatitu Reiarsdal naopak poukazuje na výraznú frakcionáciu a obohatenie HREE + Y voči LREE v prostredí s relatívne vyššou fugacitou kyslíka (neprítomnosť Eu anomálie).

Prírodné britolity sa niekedy vyznačujú vysokými obsahmi rádioaktívneho Th, v menšom množstve aj U, čo je hlavnou príčinou jeho metamiktizácie. Obsahy Th v britolite-(Ce) môžu dosahovať 6 - 21 hmot. % ThO (0.14 - 0.67 apfu; Hughson, Sen Gupta 1964; Orlandi et al. 1989; Contini et al. 1993; Oberti et al. 2001). Naproti tomu britolit-(Y) z doteraz známych výskytov obsahuje nižšie obsahy Th (do 2 hmot. % ThO₂; Griffin et al. 1979; Payette, Martin 1986; Noe et al. 1993), takže hodnoty 2.6 - 4.7 hmot. % ThO₂ (0.07 - 0.13 apfu Th) zo Stupného sú doteraz najvyššie zaznamenané koncentrácie Th v britolite-(Y) vo svetovom meradle. Vstup Th a U do štruktúry britolitu zabezpečujú substitučné mechanizmy (Th,U)⁴⁺ + vakancia = 2Ca²⁺ (Pan, Fleet 2002), prípadne (Th,U)⁴⁺ + $Si^{4+} = (Y, REE)^{3+} + P^{5+}, (Th, U)^{4+} + O^{2-} = (Y, REE)^{3+} + (F, OH)^{-}$ (Terra et al. 2006), teoreticky môže prichádzať do úvahy aj substitúcia typu (Th,U)⁴⁺ + Ca²⁺ = 2(Y,REE)³⁺. Prekryv s dominantnou substitúciou (Y,REE)SiCa1P1 pri obsahoch Th + U = 0.08 - 0.15 apfu, ako aj nižší počet analýz však predbežne neumožňujú stanoviť hlavný substitučný mechanizmus vstupu Th a U do štruktúry britolitu-(Y) zo Stupného.

Výskyty a genéza britolitu

Britolit-(Y) na typovej lokalite, japonskom granitovom pegmatite Sujšojama (Suishoyama), vystupuje v asociácií s fergusonitom a ytrialitom (Hata 1938). Na lokalite Reiarsdal v Nórsku vytvára britolit-(Y) 5 - 20 cm veľké kryštály v asociácií s allanitom, titanitom obohateným Y, zirkónom a uraninitom v živcovo-biotitovej vonkajšej zóne granitového pegmatitu (Griffin et al. 1979). Britolit-(Y) vystupuje aj ako mikroskopické inklúzie vo vulkanickom skle alkalických ryolitov vulkanickej suity Harvey v Kanade (Payette, Martin 1986). Pre všetky uvedené lokality možno konštatovať primárne magmatický (pegmatitový, vulkanický) vznik britolitu-(Y) v prostredí so zvýšenými obsahmi alkálií, Y a REE, príp. Nb, Zr a U (granitové pegmatity NYF typu, alkalické ryolity).

Výskyty britolitu-(Ce) a fluórbritolitu-(Ce) sa viažu predovšetkým na výrazne alkalické magmatické horniny, najmä syenity, nefelínové syenity, monzonity a ich pegmatity, ako aj alkalické vulkanické horniny a karbonatity (Hughson, Sen Gupta 1964; Nash 1972; Orlandi et al. 1989; Contini et al. 1993; Gu et al. 1994; Della Ventura et al. 1999; Arden, Halden 1999; Pekov 2000; Nagy 2003; Bernard, Hyršl 2004; Yakovenchuk et al. 2005). V niektorých masívoch nefelínových syenitov môže britolit, resp. REE obohatený apatit dosahovať až ložiskové koncentrácie, napr. v magmatickom komplexe Pilanesberg (JAR), Ilimaussaq (Grónsko), alebo v miasskom masíve na Urale v Rusku (Mariano 1989; Möller 1989). Práve v alkalickom magmatickom až postmagmatickom prostredí dochádza k výraznej mobilite, koncentrácií a následnej kryštalizácií minerálov REE a Y. Na rozdiel od britolitu-(Y), vznik britolitu-(Ce) býva najčastejšie spájaný s neskoromagmatickými až postmagmatickými procesmi. Napríklad v alkalickom vulkanickom komplexe Vico (Taliansko) sekundárny britolit-(Ce) spolu s hellanditom-(Ce) obrastajú primárny apatit a zirkón (Della Ventura et al. 1999), vo flogopitovonefelínovo-albitových xenolitoch vo foyaitoch masívu Chibiny (Kola, Rusko) britolit-(Ce) obrastá a zatláča monazit-(Ce) (Yakovenchuk et al. 2005). Pôsobením najmladších pegmatitových fluíd, obohatených REE, P a F na staršie pegmatitové minerály (apatit, egirín, K-živec a kremeň) vznikol britolit-(Ce) a allanit-(Ce) v segregáciach alkalických pegmatitov monzonitového komplexu Eden Lake (Arden, Halden 1999). Britolit-(Ce) v asociácií s allanitom, apatitom a sekundárnym bastnäsitom tvoria hlavnú zložku postmagmatického REE-Th ložiska Rodeo de Los Molles (Argentína), ktoré vzniklo v dôsledku hydrotermálnej alterácie (fenitizácie) biotitických monzogranitov (Lira, Ripley 1990, 1992).

V dôsledku metamorfného rozpadu primárne magmatického monazitu-(Ce) a xenotímu-(Y) z granitických hornín v podmienkach fácie zelených bridlíc až amfibolitovej fácie vzniká tenký lem apatitu, obohateného REE a Y, teda tuhý roztok apatit - britolit-(Ce), resp. apatit - britolit-(Y), spolu so zónami allanitu-(Ce), resp. epidotu, obohateného Y a REE (Finger et al. 1998; Broska, Siman 1998; Broska et al. 2005). Obsahy REE, najmä La - Sm v apatite, teda obsahy britolitovej-(Ce) zložky, rastú so stupňom regionálnej metamorfózy od amfibolitovej do granulitovú fáciu, ako bolo preukázané v ortorulách oblasti Rogaland-Vest-Agder v Nórsku (Bingen et al. 1996). Britolit (bez bližšej špecifikácie) v asociácií s allanitom bol opísaný aj v skarnoch v kontaktnej aureole granitu Dhubaich vo Veľkej Británií (Smith, Henderson 2000).

Identifikovaný britolit-(Y) zo Stupného je prvým výskytom tohto pomerne vzácneho minerálu na území Slovenska, resp. Západných Karpát. Zároveň sa jedná o druhú opísanú lokalitu britolitu-(Y) v Európe po nórskom Reiarsdale (Griffin et al. 1979) a jeho prvý zistený výskyt priamo v granitických horninách. Na základe textúrnych vzťahov a priebehu normalizovaných obsahov REE v britolite-(Y) možno predpokladať jeho neskoromagmatický pôvod a čiastočné zatláčanie, prípadne narastanie na primárny, zrejme ranomagmatický apatit v prostredí obohatenom fluidami, najmä pri vysokej aktivite fluóru, ktorá je typická pre granity A-typu.

Poďakovanie

Táto práca bola podporovaná Agentúrou na podporu výskumu a vývoja na základe zmluvy č. APVV-0557-06. Autori ďakujú I. Broskovi (Geologický ústav SAV, Bratislava) a R. Škodovi (Ústav geologických věd, Masarykova univerzita, Brno) za kritické posúdenie a užitočné námety, ktoré pomohli zlepšiť úroveň článku. P. Konečnému a D. Ozdínovi (Štátny geologický ústav D. Štúra, Bratislava) patrí poďakovanie za asistenciu pri práci na elektrónovom mikroanalyzátore a J. Košlerovi (Univerzita Bergen, Nórsko) za pomoc pri získavaní literatúry.

Literatúra

- Arden K. M., Halden N. M. (1999): Crystallization and alteration history of britholite in rare-earth-elementenriched pegmatitic segregations associated with the Eden Lake Complex, Manitoba, Canada. - *Can. Mineral.* **37**, 1239-1253.
- Bayliss P. (2000): Glossary of obsolete mineral names. - Mineralogical Record Inc. Tucson.
- Bernard J. H., Hyršl J. (2004): Minerals and their localities. - Granit. Praha.
- Bingen B., Demaiffe D., Hertogen J. (1996): Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: The role of apatite and monazite in orthogneisses from southwestern Norway. - Geochim. Cosmochim. Acta 60, 1341-1354.
- Broska I., Siman P. (1998): The breakdown of monazite in the West-Carpathian Veporic orthogneisses and Tatric granites. - Geol. Carpath. 49, 161-167.

- Broska I., Williams C. T., Janák M., Nagy G. (2005): Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. - *Lithos* 82, 71-83.
- Contini S., Venturelli G., Toscani L., Caperdi S., Barbieri M. (1993): Cr-Zr-armalcolite-bearing lamproites of Cancarix, SE Spain. - *Mineral. Mag.* 57, 203-216.
- Della Ventura G., Williams C. T., Cabella R., Oberti R., Caprilli F., Bellatreccia F. (1999): Britholite-hollandite intergrowths and associated REE-minerals from the alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy): petrological implications bearing on the REE mobility in volcanic systems. - *Eur. J. Mineral.* 11, 843-854.
- Finger F., Broska I., Roberts M. P., Schermaier A. (1998): Replacement of primary monazite by apatite-allaniteepidote coronas in an amphibolite facies granite gneiss from the eastern Alps. - *Am. Mineral.* 83, 248-258.
- Fleet M. E., Pan Y. (1995): Site preference of rare earth elements in fluorapatite. - Am. Mineral. 80, 329-335.
- Gay P. (1957): An X-ray investigation of some rare earth silicates: cerite, lessingite, beckelite, britholite and stillwaterite. - *Mineral. Mag.* **31**, 455-468.
- Griffin W. L., Nilssen B., Jensen B. B. (1979): Britholite (-Y) and its alteration: Reiarsdal, Vest-Agher, south Norway. Contributions to the mineralogy of Norway, No. 64. - Norsk Geol. Tidskr. 59, 265-271.
- Gu J., Chao G. Y., Tang S. (1994): A new mineral fluorbritholite-(Ce). - J. Wuhan Univ. Technol. 9, 3, 9-14.
- Hata S. (1938): Abukumalite, a new mineral from pegmatites of lisaka, Fukushima prefecture. - Sci. Pap. Inst. Phys. Chem. Res. (Tokyo) 34, 1018-1023.
- Hughson M. R., Sen Gupta J. G. (1964): A thorian intermediate member of the britholite-apatite series. - Am. Mineral. 49, 937-951.
- Ito J. (1968): Silicate apatites and oxyapatites. Am. Mineral. 53, 890-907.
- Lira R., Ripley E. M. (1990): Fluid inclusion studies of the Rodeo de Los Molles REE and Th deposit, Las Chacras Batholith, central Argentina. - Geochim. Cosmochim. Acta 54, 663-671.
- Lira R., Ripley E. M. (1992): Hydrothermal alteration and REE-Th mineralization at the Rodeo de Los Molles deposit, Las Chacras batholith, central Argentina. -*Contrib. Mineral. Petrol.* **110**, 370-386.
- Mariano A. N. (1989): Economic geology of rare earth minerals. - In: Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy 21 (Ed. B. R. Lipin, G. A. McKay), 309-337. - Mineral. Soc. America. Washington.
- Marschalko R. (1986): Vývoj a geotektonický význam kriedového flyšu bradlového pásma. - Vyd. Veda. Bratislava.
- Möller P. (1989): Rare earth mineral deposits and their industrial importance. - In: Lanthanides, tantalum and niobium (Ed. P. Möller, P. Černý, F. Saupé), 171-188. - Springer. Berlin Heidelberg.
- Nagy G. (2003): Nacareniobsite in phonolites in the Mecsek Mts. (Hungary) - second occurrence in the world? - Acta Mineral.-Petrogr. Abstr., Series 1, 75.
- Nash W. P. (1972): Apatite chemistry and phosphorus fugacity in a differentiated igneous intrusion. - Am. Mineral. 57, 877-886.

- Noe D. C., Hughes J. M., Mariano A. N., Drexler J. W., Kato A. (1993): The crystal structure of monoclinic britholite-(Ce) and britholite-(Y). - *Zeitsch. Kristallogr.* 206, 233-246.
- Oberti R., Ottolini L., Della Ventura G., Parodi G. C. (2001): On the symetry and crystal chemistry of britholite: new structural and microanalytical data. *Am. Mineral.* **86**, 1066-1075.
- Orlandi P., Perchiazzi N., Mannucci G. (1989): First occurrence of britholite-(Ce) in Italy (Monte Somma, Vesuvius). - *Eur. J. Mineral.* **1**, 723-725.
- Pan Y., Fleet M. E. (2002): Compositions of the apatitegroup minerals: substitution mechanisms and controlling factors. - In: *Phosphates: geochemical, geobiological, and materials importace. Reviews in Mineralogy* 48 (Ed. M. J. Kohn, J. Rakovan, J. M. Hughes), 13-49.
 Mineral. Soc. America. Washington.
- Payette C., Martin R. (1986): The Harvey volcanic suite, New Brunswick. I. Inclusions of magma in quartz phenocrysts. - *Can. Mineral.* 24, 557-570.
- Pekov I. V. (2000): Lovozero Massif: history, pegmatites, minerals. - Ocean Pictures Ltd. Moscow.
- Smith M., Henderson P. (2000): Fluid evolution and the formation and alteration of allanite in skarn from the Beinn an Dhubaich granite aureole, Skye. - J. Confer. Abstr. 5, 939-940.
- Strunz H., Nickel E. H. (2001): Strunz mineralogical tables. Chemical-structural mineral classification systém. - Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller). Stuttgart.
- Taylor S. R., McLennan S. M. (1985): The continental crust: its composition and evolution. - Blackwell Scientific Publications. Oxford.
- Terra O., Audubert F., Dacheux N., Guy C., Podor R. (2006): Synthesis and characterization of thorium-bearing britholites. - J. Nuclear Mater. 354, 49-65.
- Uher P. (2004): Akcesorické minerály granitoidných hornín z obliakov flyšu Pieninského bradlového pásma. - Natura Carpat. 45, 49-58.
- Uher P., Broska I. (1996): Post-orogenic Permian granitic rocks in the Western Carpathian-Pannonian area: Geochemistry, mineralogy and evolution. - *Geol. Carpath.* 47, 311-321.
- Uher P., Marschalko R. (1993): Typology, zoning and chemistry of zircon from main types of granitic and rhyolitic pebbles in conglomerates of the Pieniny Klippen Belt Cretaceous flysch (Western Slovak Segment, Western Carpathians). - *Geol. Carpath.* 44, 113-121.
- Uher P., Pushkarev Y. D. (1994): Granitic pebbles of the Cretaceous flysch of the Pieniny Klippen Belt, Western Carpathians: U/Pb zircon ages. - *Geol. Carpath.* 45, 375-378.
- Uher P., Marschalko R., Martiny E., Puškelová Ľ., Streško V. (1994): Geochemical characterization of granitic rock pebbles from Cretaceous to Paleogene flysch of the Pieniny Klippen Belt. - *Geol. Carpath.* **45**, 171-183.
- Vlasov K. A., Sindejeva N. D., Serďjučenko D. P., Ješkova Je. M., Kuz`menko M. V., Pjatenko Ju. A. (1964): Geochimija, mineralogija i genetičeskije tipy mestoroždenij redkich elementov. Tom II. Mineralogija redkich elementov. - Nauka. Moskva.
- Yakovenchuk V. N., Ivanyuk G. Yu., Pakhomovsky Ya. A., Men`shikov Yu. P. (2005): Khibiny. - Laplandia Minerals. Apatity.