Asociace Nb-Ta-(Ti-REE) oxidických minerálů v pegmatitu Maršíkov - Lysá hora v Hrubém Jeseníku, Česká republika

Association of Nb-Ta-(Ti-REE) oxide minerals in the Maršíkov - Lysá hora pegmatite in Hrubý Jeseník Mountains, Czech Republic

Štěpán Chládek^{1)*} a Jiří Zimák²⁾

¹⁾Katedra mineralógie a petrológie, Prírodovedecká fakulta, Univerzita Komenského, Mlynská dolina, 842 15 Bratislava, Slovenská republika; *e-mail: chladek@fns.uniba.sk ²⁾Katedra geologie, Přírodovědecká fakulta, Univerzita Palackého, 17. listopadu, 771 46 Olomouc, Česká republika

CHLÁDEK Š., ZIMÁK J. (2016) Asociace Nb-Ta-(Ti-REE) oxidických minerálů v pegmatitu Maršíkov - Lysá hora v Hrubém Jeseníku, Česká republika. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 24, 1, 25-32. ISSN 1211-0329.

Abstract

Accessory Nb-Ta-Ti-REE oxide minerals were detected in recently described granitic pegmatite of the beryl-columbite subtype at Maršíkov - Lysá hora, northern Moravia, Czech Republic. Primary magmatic mineral assemblage is represented by columbite-group minerals, rutile and aeschynite-group minerals in the blocky and albite (cleavenlandite) textural-paragenetic units. Columbite-(Fe) is the most common Nb-Ta mineral whereas rare columbite-(Mn) occurs only in the cleavenlandite unit. Columbite-group minerals shows a lower degree of fractionation; Ta \leftrightarrow Nb and Mn \leftrightarrow Fe are dominant major element substitution mechanisms, minor Ti enters into the columbite lattice via rutile substitution: $3Ti^{4+} \leftrightarrow (Fe,Mn)^{2+} + 2(Nb,Ta)^{5+}$. Very rare aeschynite-(Ce) occurs in association with rutile and in Nb-rich rutile. The magmatic Nb-Ta-Ti assemblage underwent a significant transformation during post-magmatic to hydrothermal stage of the pegmatite evolution. Breakdown products of primary precursors are minerals of pyrochlore supergroup, they occur on the tiny cracks of the zonal columbite-(Fe) and rutile. Secondary phases of betafite and pyrochlore group-minerals show significant uranium enrichment. High contents of Si and Al in the pyrochlore-supergroup minerals are consistent with their hydrothermal-metasomatic origin and crystallization of late alpine-type alpine paragenesis on cracks in the pegmatite body.

Key words: beryl-columbite pegmatite, Nb-Ta minerals, columbite group, rutile, aeschynite-(Ce), pyrochlore supergroup, pegmatite evolution, Maršíkov, Czech Republic Obdrženo: 20. 10. 2015; přijato: 15. 4. 2016

Úvod

Minerály niobu a tantalu jsou typickými akcesoriemi granitových pegmatitů, především vzácnoprvkového typu (např. Černý, Ercit 1989). Variské beryl-columbitové pegmatity silezika (Novák 2005 ve smyslu Černý 1991) jsou charakteristicky obohacené o řadu vzácných litofilních prvků a především klasické berylové pegmatity v okolí Maršíkova jsou nositelem pestré Nb-Ta mineralizace. Ta je reprezentována na většině místních výskytů četnými minerály skupiny columbitu, ve více frakcionovaných pegmatitech, například Maršíkov - Scheibengraben (Novák et al. 2003a) nebo Maršíkov - Schinderhübel (Černý et al. 1992; 1995) je dokumentována také přítomnost tantalitu -(Mn), minerálů skupiny aeschynitu (především rynersonit) a také vzácných minerálů pyrochlorové superskupiny. Tento příspěvek se zabývá specifickou asociací Nb, Ta, Ti, REE-oxidických minerálů v pegmatitu na Lysé hoře u Maršíkova.

Relativně nedávno popsaný beryl-columbitový pegmatit na lokalitě Maršíkov - Lysá hora je situován na jz. svahu Lysé hory (744 m), a to přibližně mezi uvedenou kótou a Zadním vrchem (626 m). Lokalita je vzdálena přibližně 1.5 km vsv. od kostela v Maršíkově. Výskyt leží na území oplocené obory, cca 60 m od její hranice. Od klasického naleziště Maršíkov - Scheibengraben je studovaná lokalita vzdálena cca 350 m ssz. směrem a je součástí vrstevnicově probíhajícího agrárního valu. GPS-souřadnice lokality jsou: N50°02.331' a E17°05.825'. Základní údaje o zdejším výskytu pegmatitu uvádějí Zimák, Chládek (2008); Štosová (2009); Chládek (2011) a Chládek, Zimák (2012).

Na menších agrárních haldách převažují úlomky amfibolitů a amfibolických rul a v hojné míře se zde nacházejí fragmenty granitických pegmatitů (bloky výjimečně až 1 m). Výchoz pegmatitu dosud nebyl zjištěn, určitý stupeň zonality charakteristických texturně-paragenetických jednotek byl studován z volných bloků pegmatitu. Na stavbě pegmatitového tělesa na Lysé hoře se podílí následující texturně-paragenetické jednotky: (i) objemově dominantní hrubě zrnitá jednotka o složení (křemen+K-živec+albit+muskovit±biotit), (ii) grafická jednotka o složení (křemen+K-živec+muskovit±granát±beryl), (iii) bloková jednotka K-živce o složení (křemen+K-živec+muskovit±granát±beryl±columbit), (iv) křemenné jádro (křemen+beryl±columbit) a (v) jednotka cleavenlanditu (albit+muskovit±columbit). Dosud ve zdejším pegmatitu nebyla zjištěna metasomatická jednotka charakteru cukrovitého albitu.

Obr. 1 Oscilačně zonální automorfní columbit-(Fe), na trhlině okrajové zóny hypautomorfně omezený homogenní "oxyuranopyrochlor".

Obr. 2 Oscilačně zonální automorfní columbit-(Fe), v sektorově oscilačně zonální partii automorfní výrazně světlejší inkluze rynersonitu.

Obr. 3 Výrazně alterovaný rutil a niobem bohatý rutil (světlejší jehlicovitý agregát) doprovázený homogenními automorfními tabulkovitými individui aeschynitu-(Ce) v agregátu silně chloritizovaného biotitu.

Vedle hlavních a vedlejších minerálů (muskovit a často silně chloritizovaný biotit) pegmatitu je v akcesorickém množství přítomen granát (almandin-spessartin), beryl, Nb-Ta oxidické minerály, rutil, pyrit, zirkon, apatit, coffinit, cheralit, uraninit aj. (Chládek 2011).

Metodika

Chemismus minerálů skupiny columbitu, aeschynitu, rutilu a minerálů pyrochlorové superskupiny byl studován v leštěných výbrusech metodou zpětně odražených elektronů (BSE) a metodou vlnově-disperzní elektronové mikroanalýzy (WDX) na elektronové mikrosondě Cameca SX100 na PřF MU v Brně. Bodové mikroanalýzy byly získány při urychlovacím napětí 15 keV, vzorkovém proudu 20 nA, průměru elektronového svazku 1 - 2 µm za použití přírodních a syntetických standardů:

aeschynit - albit A (Na), YAG (Y), $Cr_2Ta_2O_6$ (Ta), zirkon (Zr), sanidin (AI, Si, K), andradit (Ca), SCPO₄ (Sc), TiO (Ti), rodonit (Mn), columbit (Fe, Nb), U (U), ThO₂ (Th), Sn (Sn), W (W), LaB₆ (La), CeAl₂ (Ce), PrF₃ (Pr), SmF₃ (Sm), NdF₃ (Nd), GdF₃ (Gd), REE (Dy), YErAG (Er), YbGI (Yb), MgAl₂O₄ (Mg), topaz (F), EuF₃ (Eu), fluorapatit (P), vanadinit (Pb),

columbit - Ta₂O₅ (Ta), andradit (Ca, Si), columbit - Ivigtut (Nb, Fe), TiO (Ti), Sn (Sn), spessartin (Mn), U (U), Bi (Bi), W (W), YAG (Y), zirkon (Zr), ScVO₄ (Sc), chromit (Al), olivín (Mg), fluorapatit (P), Sb (Sb), PbSe (Pb), InAs (As),

pyrochlor-betafit - albit A (Na), Ta_2O_5 (Ta), andradit (Ca, Si), columbit (Nb, Fe), TiO (Ti), Sn (Sn), spessartin (Mn), U (U), brabantit (Th), Bi (Bi), W (W), YAG (Y), zirkon (Zr), ScVO₄ (Sc), chromit (Al), olivín (Mg), fluorapatit (P), Sb (Sb), PbSe (Pb), InAs (As), CeAl₂ (Ce), PrF₃ (F),

rutil - olivín (Mg), titanit (Si, Ti, Ca). sanidin (Al), zirkon (Zr), YGI (Y), Sn (Sn), chromit (Cr), almandin (Fe), spessartin (Mn), W (W), PbS (Pb), columbit lvigtut (Nb), U (U), ScVO₄ (Sc), $Cr_2Ta_2O_6$ (Ta), gahnit (Zn), Ni (Ni).

Krystalochemické vzorce minerálů skupiny columbitu a rutilu byly normalizovány na sumu kationtů = 12, resp. 1 (u rutilu) s rozpočítáním nábojové bilance Fe³⁺ a Fe²⁺. Minerály skupiny aeschynitu byly kalkulovány na bázi šesti atomů kyslíku a přepočet minerálů pyrochlorové superskupiny byl normalizován na sumu W + Ta + Nb + P + Ti + Si + Al + Mg = 2.

Výsledky

V pegmatitu Maršíkov - Lysá hora byly minerály skupiny columbit-tantalitu, aeschynitu, rutil a minerály pyrochlorové superskupiny zjištěny v jednotce blokového K-živce, reliktech křemenného jádra a albitové (cleavenlanditové) jednotce. Mezi primární Nb,Ta,Ti oxidy náleží minerály columbitové skupiny, zastoupené dominantně columbitem-(Fe), výjimečně columbitem-(Mn) (v jednotce cleavenlanditu), rutil a minerály ze skupiny aeschynitu. S hydrotermální fází vývoje pegmatitu je spojen výskyt minerálů pyrochlorové superskupiny spjatých s alteracemi columbitu-(Fe) a rutilu. Vybrané analýzy jsou ukázány v tabulkách 1 a 2 a texturní a krystalochemické rysy analyzovaných fází jsou znázorněny na obrázcích 1 až 8.

Columbit-(Fe,Mn)

Columbit tvoří xenomorfně až automorfně omezená zrna nebo tence až tlustě tabulkovité krystaly velké až 1 cm, akcesoricky se vyskytující v jednotce blokového K-živce, jednotce cleavenlanditu popřípadě v křemenném jádru. Ojediněle byla zjištěna také masivní hnízdovitá akumulace složená z tabulkovitých individuí columbitu v asociaci s rutilem, zirkonem a berylem v blokovém K-živci. Jednotlivá automorfní zrna columbitu jsou výrazně nehomogenní a vyznačují se typickou oscilační (obr. 1) nebo vzácněji také sektorově oscilační zonalitou. Xenomorfně omezená zrna mající obvykle nevýraznou zonalitu nebo také hnízdovitou zonalitu byla zjištěna v blízkosti coffinit-zirkonového agregátu. Relativně často byl v asociaci s columbitem detekován také granát nebo uraninit.

Frakcionační atomový poměr Ta/(Ta+Nb) nabývá nízkých hodnot v intervalu 0.05 - 0.19, zatímco Mn/(Mn+Fe) vzrůstá v intervalu 0.31 - 0.49 pro columbit-(Fe) z blokové jednotky a po 0.77 pro columbit-(Mn) z jednotky cleavenlanditu (obr. 6). Mechanizmus zastupování majoritních prvků v pozicích A a *B* probíhá cestou homovalentních substitucí Mn²⁺ \leftrightarrow Fe²⁺ a Ta⁵⁺ \leftrightarrow Nb⁵⁺.

Obsah Ti dosahuje obvykle 0.7 - 2.0 hm. % TiO, (0.37 apfu Ti) a záporně koreluje s R⁵⁺ (Nb,Ta) a R²⁺ (Fe,Mn). Ti⁴⁺ vstupuje do columbitové struktury rutilovým typem substituce: 3Ti⁴⁺ ↔ (Fe,Mn)²⁺ + 2(Nb,Ta)⁵⁺. Obsah Sn je obvykle nižší než 0.1 hm. % SnO₂ a podobně je columbit ochuzen také v případě W (max. 0.5 hm. % WO₂). Atomové proporce Mg jsou zanedbatelné (max. 0.1 apfu Mg). Většina ostatních minoritních prvků (např. Ca, Sc, Pb, As a Sb) se pohybuje pod mezí detekce. Přítomné Fe³⁺ bylo vypočteno v 75% analyzovaných bodů columbitu, který obsahuje maximálně 4 hm. % Fe₂O₂. Byla zjištěna záporná závislost mezi Fe3+ a R5+ a výrazná kladná závislost mezi Fe³⁺ a R²⁺ (obr. 7). Chování Fe³⁺ ve studovaném columbitu není zcela jasné a především zvýšené obsahy Fe3+ mohou být indikátorem výrazně měnících se oxidačních podmínek krystalizace columbitu.

Rutil

Rutil byl jednak zjištěn v asociaci s columbitem v blokové texturně-paragenetické jednotce v podobě hypautomorfně omezených výrazně sektorově zonálních zrn a jednak ve formě okrouhlých xenomorfních inkluzí (obvykle <300 µm) v chloritizovaném biotitu z cleavenlanditové jednotky (obr. 4). Rutil je v mnoha případech (zejména v chloritizovaném biotitu) extrémně alterovaný sekundárními minerály pyrochlorové superskupiny. Niobem obohacený rutil byl zjištěn ojediněle také v podobě jehlicovitých agregátů v asociaci s aeschynitem-(Ce) v chloritizovaném biotitu z cleavenlanditové jednotky (obr. 3).

Rutil v blokové K-živcové jednotce pegmatitu obsahuje 5 - 16 hm. % Nb₂O₅, zajímavé jsou mírně zvýšené obsahy vanadu (max. 1.35 hm. % V₂O₃). Rutil z chloritizovaného biotitu je výrazně obohacen niobem (až 23 hm. % Nb₂O₅). Rutil z blokového K-živce obsahuje zvýšené množství Fe³⁺ (max. 3.3 hm. % Fe₂O₃), zatímco druhý typ rutilu je o něj ochuzen a většinové Fe je přítomno jako Fe²⁺.

Colum BSE 15.kV

Obr. 4 Okrouhlé zrno reliktního niobem bohatého rutilu výrazně alterované sekundárním betafitem (výrazně heterogenní agregát složený z xenomorfních individuí).

Obr. 5 Relikt niobem bohatého rutilu intenzívně alterovaný sekundárním "oxyuranobetafitem" (lemy a hypautomorfní individua).

Obr. 6 Klasifikační diagram columbitu-(Fe,Mn) z pegmatitu Lysá hora u Maršíkova a srovnání s columbit-tantality z vybraných beryl-columbitových pegmatitů silezika, data převzána: Maršíkov - Scheibengraben (Novák et al. 2003a), Maršíkov - Schinderhübel I (Chládek 2014), Maršíkov - Polesí (M. Novák nepubl.), Maršíkov - Bienergraben (M. Novák nepubl., J. Zimák nepubl.), Maršíkov - Oplustilberg (J. Zimák nepubl.).

(analyzy 0. 0	0, 00, 01, 02)	nonnanzao		,				
	8	40	41	46	59	60	61	62
WO ₃	0.14	0.28	0.04	0.34	0.10	0.05	0.06	0.10
Ta ₂ O ₅	6.35	10.49	17.95	7.53	2.80	0.87	2.13	6.10
Nb ₂ O ₅	70.78	65.25	60.31	69.74	15.98	5.55	5.85	22.57
TiO ₂	0.81	1.83	1.44	0.74	73.81	87.74	86.24	59.47
SnO ₂	0.01	0.03	0.01	0.00	0.48	0.88	0.02	0.00
UO ₂	0.02	0.12	0.08	0.00	0.00	0.00	0.00	0.04
SiO ₂	0.01	0.11	0.00	0.03	0.05	0.03	0.62	0.16
ZrO_2	0.09	0.11	0.05	0.14	0.02	0.01	0.10	0.04
Y_2O_3	0.14	0.23	0.17	0.16	0.08	0.02	0.05	0.66
Sc ₂ O ₃	0.02	0.14	0.05	0.01	0.18	0.27	0.09	0.08
Cr ₂ O ₃	-	-	-	-	0.08	0.13	0.02	0.01
$V_2 O_3$	-	-	-	-	1.23	1.35	0.26	0.00
Al ₂ O ₃	0.02	0.07	0.01	0.00	0.03	0.07	0.42	0.08
Fe ₂ O ₃	2.94	0.00	1.15	2.04	2.90	2.42	3.29	0.90
FeO	10.84	10.39	12.29	9.53	3.00	0.00	0.00	5.98
MnO	12.19	8.29	5.82	9.17	0.10	0.00	0.03	0.02
MgO	0.23	0.25	0.21	0.18	0.01	0.01	0.00	0.03
PbO	0.32	0.39	0.25	0.24	0.06	0.00	0.02	0.15
CaO	0.01	0.49	0.01	0.00	0.02	0.00	0.19	0.30
suma	98.64	99.74	98.83	99.83	100.04	99.37	99.28	96.60
W	0.008	0.017	0.002	0.020	0.000	0.000	0.000	0.000
Та	0.373	0.682	1.175	0.473	0.011	0.003	0.008	0.026
Nb	6.918	7.049	6.561	7.275	0.104	0.035	0.037	0.161
Ti	0.132	0.333	0.261	0.128	0.802	0.912	0.899	0.706
Sn	0.000	0.003	0.000	0.000	0.003	0.005	0.000	0.000
U	0.001	0.006	0.004	0.000	-	-	_	-
Si	0.000	0.026	0.000	0.007	0.001	0.000	0.009	0.003
Zr	0.009	0.014	0.000	0.016	0.000	0.000	0.001	0.000
Y	0.017	0.029	0.022	0.02	0.000	0.000	0.000	0.005
Sc	0.000	0.029	0.010	0.000	0.002	0.003	0.001	0.001
V	-	-	-	-	0.014	0.015	0.003	0.000
AI	0.000	0.000	0.000	0.000	0.000	0.001	0.007	0.001
Fe ³⁺	0.533	0.000	0.208	0.354	0.023	0.025	0.034	0.011
Fe ²⁺	1.768	2.075	2.472	1.838	0.036	0.000	0.000	0.079
Mn	2.229	1.681	1.186	1.792	0.001	0.000	0.000	0.000
Mg	0.082	0.076	0.076	0.062	0.000	0.000	0.000	0.001
Pb	0.000	0.000	0.016	0.015	0.000	0.000	0.000	0.001
Са	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.005
∑Kat	12.000	12.000	12.000	12.000	1.000	1.002	1.002	1.001
Ta/(Ta+Nb)	0.051	0.088	0.152	0.061	0.096	0.079	0.178	0.139
Mn/(Mn+Fe)	0.558	0.447	0.324	0.494	-	-	-	-

Tabulka 1 Reprezentativní složení columbitu-(Fe,Mn), normalizace na $\sum Kat = 12$ (analýzy č. 8, 40, 41, 46), rutilu (analýzy č. 59, 60, 61, 62) - normalizace na $\sum Kat = 1$

Minerály skupiny aeschynitu

Minerály aeschynitové skupiny se na lokalitě vyskytují velmi vzácně a jsou reprezentovány aeschynitem-(Ce) a rynersonitem (?). Aeschynit-(Ce) byl zjištěn v agregátu silně chloritizovaného biotitu v asociaci s rutilem (obr. 3). Aeschynit tvoří automorfně omezené tabulkovité krystaly o velikosti do 40 µm, které jsou v BSE homogenní, ve srovnání s asociujícím rutilem výrazně světlejší. Vzhledem ke sníženým analytickým sumám uvedeného minerálu je jeho složení přibližné a odpovídá stechiometricky vzorci aeschynitu-(Ce): $[Ce_{0.27}Nd_{0.19}Ca_{0.15}Y_{0.06}(Pr,Sm,Gd,$ $Dy,Er,Yb)_{50.21}Fe²⁺_{0.01}\square_{0.11}]_{51.00}(Ti_{1.09}Nb_{0.87}Ta_{0.04})_{52.00}O_{6.00}$. Uvedená fáze se vyznačuje deficitním obsahem Th (0.001 *apfu* Th) a U (0.003 *apfu* U). Celkově snížené sumy oxidů jsou způsobeny vakancemi v pozici *A* a výraznou hydratací, která postihuje komplexně celou rutil - aeschynitovou asociaci v chloritizovaném biotitu.

Druhou fází ze skupiny aeschynitu je minerál se složením Ca-Ta>>Nb>Ti, pravděpodobně odpovídající rynersonitu (obr. 2), který byl zjištěn jako automorfní inkluze v sektorově oscilačně zonálním columbitu-(Fe) z blokové jednotky. Vzhledem k jeho malým rozměrům nebyla provedena reprezentativní WDX analýza.

Minerály superskupiny pyrochloru

Minerály pyrochlorové superskupiny mají obecný vzorec $A_{2-m}B_2X_{6-w}Y_{1-n}$ (Atencio et al. 2010). Ve studovaném pegmatitu byly zjištěny pouze titanem a niobem dominantní zástupci skupin betafitu a pyrochloru. Všechny dosud zjištěné členy pyrochlorové superskupiny jsou sekundárního původu a jejich vznik je spojen s hydrotermální etapou vývoje pegmatitu a svým výskytem jsou vázány na blokovou jednotku a jednotku cleavenlanditu.

Minerály skupin betafitu a pyrochloru se vyskytují ve dvou odlišných asociacích, a to buď společně s columbitem-(Fe), nebo s relikty zrn niobem bohatého rutilu. Uranový pyrochlor byl zjištěn v podobě hypautomorfně omezeného, téměř homogenního zrna (obr. 1) o velikosti přibližně 10 µm, situovaného na trhlině okrajové zóny oscilačně zonálního krystalu columbitu-(Fe). Betafit byl zjištěn výhradně v lemech a trhlinách individuí niobového rutilu. Agregáty betafitu jsou výrazně heterogenní, složené z xenomorfních individuí (obr. 4) v BSE výrazně světlejších než okolní reliktní rutil. Morfologicky odlišný typ betafitu byl zjištěn v podobě hypautomorfně omezených okrouhlých, v BSE téměř homogenních zrn, vyplňujících silně rozpraskané partie zrn niobového rutilu (obr. 5).

Studované fáze se vyznačují dominancí Ti (betafit: $\Sigma M^{4+} > \Sigma M^{5+}$) a Nb (pyrochlor: $\Sigma M^{5+} > \Sigma M^{4+}$) (Hatert, Burke 2008; Atencio et al. 2010) a obsahy hlavních komponent pozice *B* kolísají v rozsahu 5.5 - 11.7 hm. % TiO₂ a 15.7 - 18.5 hm. % Nb₂O₅. Pyrochlor a betafit se vyznačují deficitním obsahem Ta (max. 4.1 hm. % Ta₂O₅ pro uranový pyrochlor) a poměr Ta/(Ta+Nb) nabývá rozsah 0.01 - 0.06 pro betafit a zvyšuje se až na 0.12 pro uranový pyrochlor. Obsahy Sn jsou pod mezí detekce a obsah WO₃ dosahuje maxima 0.2 hm. %. Betafit i pyrochlor se vyznačují srovnatelně vysokými obsahy Si (1.3 - 2.5 hm. % SiO₂) a Al (max. 1.9 hm. % Al₂O₃); současná nomenklatura minerálů pyrochlorové superskupiny (Atencio et al. 2010) poukazuje na jejich možnou krystalochemickou roli v pozici *B*.

Normalizace na \sum (W+Ta+Nb+P+Ti+Si+Zr+Al+Mg) = 2 krystalochemických vzorců minerálů pyrochlorové superskupiny uvažuje optimální sumu všech kationtů vstupujících do pozice *A* blízkou 2. U všech studovaných fází je dominantním kationtem této pozice U⁴⁺ a obsahy U kolísají v rozsahu 43.5 - 54.2 hm. % UO₂. Minoritně do pozice *A* vstupuje Ca²⁺ (max. 0.19 *apfu*), Fe²⁺ (0.12 *apfu*) a Pb²⁺ (0.03 *apfu*). Uvedené minerály se vyznačují naprosto deficitními obsahy Na (0.01 *apfu* Na). Celková suma všech kationtů vstupujících do pozice *A* kolísá v rozsahu 1.07 - 1.57 *apfu* a část této pozice je vakantní. Míra vakancí pozice *A* pro uranový pyrochlor dosahuje 25.0 at. % a pro betafit kolísá v rozsahu 21.0 - 46.0 at. %.

Studované betafity i uranový pyrochlor vykazují minoritní obsah fluoru (max. 0.13 *apfu*), jenž může být přítomen jak v pozici X, tak v pozici Y. Snížené analytické sumy oxidů jsou způsobeny výraznou hydratací všech studovaných fází. Strukturně vázaná voda obecně bývá různou měrou zastoupena v minerálech pyrochlorové superskupiny v pozicích X a Y, ale také v pozici A (např. Lumpkin, Ewing 1995; Atencio et al. 2010). Všechny studované fáze ukazují konzistentně zvýšené obsahy P (1.2 - 2.3 hm. % P_2O_5 , 0.17 *apfu* P) a byla zjištěna nevýrazná pozitivní korelace mezi Al³⁺ a P⁵⁺. Nevýrazná negativní korelace mezi sumou P + Al a Si může poukazovat na možný vstup P⁵⁺ do struktury pyrochloru a betafitu cestou berlinitového typu substituce P⁵⁺ + Al³⁺ \leftrightarrow 2Si⁴⁺ a indikovat možnou strukturní roli P⁵⁺ v pozici *B*.

Uranem dominantní betafit a pyrochlor odpovídá svým složením IMA neschváleným minerálům, které je možné podle současné klasifikace (Atencio et al. 2010) označit jako "oxyuranobetafit" a "oxyuranopyrochlor". Chakhmouradian, Mitchell (2002) referovali o pyrochloru s dominant-

	23	24	25	38
WO ₃	0.03	0.16	0.20	0.09
Ta₂O₅	1.89	0.32	0.24	4.14
Nb ₂ O ₅	17.49	15.70	16.89	18.53
P_2O_5	2.30	1.86	1.74	1.20
TiO ₂	11.67	9.16	8.62	5.55
UO ₂	43.48	51.10	54.18	48.65
ThO ₂	0.72	0.03	0.21	0.41
SiO ₂	1.66	2.46	1.34	1.88
ZrO ₂	0.36	0.00	0.04	1.13
Y_2O_3	0.02	0.04	0.00	0.00
Al_2O_3	1.92	1.19	1.47	1.68
Ce ₂ O ₃	0.00	0.04	0.03	0.05
CaO	1.40	1.45	1.58	1.12
FeO	1.27	1.32	1.10	1.23
MnO	0.01	0.00	0.01	0.77
MgO	0.03	0.06	0.03	0.04
PbO	0.30	0.17	0.20	0.69
Na₂O	0.05	0.00	0.00	0.40
F	0.28	0.30	0.27	0.28
suma	84.88	85.36	88.15	87.84
W	0.001	0.004	0.006	0.003
Та	0.044	0.009	0.007	0.121
Nb	0.680	0.723	0.813	0.902
Р	0.167	0.160	0.157	0.109
Ti	0.755	0.702	0.690	0.449
U	0.832	1.155	1.282	1.165
Th	0.014	0.001	0.005	0.010
Si	0.143	0.250	0.143	0.202
Zr	0.015	0.000	0.000	0.059
Y	0.001	0.002	0.002	0.000
Al	0.192	0.143	0.176	0.206
Ca	0.121	0.158	0.180	0.121
Fe	0.091	0.112	0.098	0.111
Mn	0.001	0.000	0.000	0.070
Mg	0.003	0.009	0.008	0.007
Pb	0.007	0.005	0.006	0.020
Na	0.006	0.000	0.000	0.008
	0.076	0.097	0.091	0.112
<u></u> ΣΒ	2.000	2.000	2.000	2.058
∑R ⁵⁺	0.851	0.892	0.977	1.132
∑R ⁴⁺	0.913	0.952	0.833	0.710
ΣΑ	1.073	1.433	1.573	1.505
$\Sigma^{A_{\Box}}$	0.927	0.567	0.427	0.495
Ta/(Ta+Nb)	0.060	0.010	0.010	0.120

ním obsahem uranu, v ostatních případech podle stávající klasifikace (Atencio et al. 2010) není uran dominantním kationtem v pozici *A*. Z hlediska klasifikace není zcela jasná krystalochemická role H₂O ve struktuře uvedených minerálů, jelikož H₂O nebylo analyticky stanoveno.

Tabulka 2 Reprezentativní složení minerálů supersku-
piny pyrochloru, normalizace na $\Sigma(W + Nb + Ta + P)$
+ Ti + Si + Zr + Al + Mg) = 2, uranový betafit (analý-
zv č. 23. 24. 25), uranový pyrochlor (analýza č. 38)

Obr. 7 Výrazná kladná závislost Fe³⁺ vs. (Fe+Mn)²⁺ v columbitu -(Fe,Mn) z Lysé hory u Maršíkova.

Obr. 8 Ternární diagram Ti+Sn - Nb+Ta - Fe_{τoτ}+Mn znázorňující umístění fází rutil (TiO₂) - columbitové (AB₂O₆) stechiometrie a sekundárních minerálů pyrochlorové superskupiny ("oxyuranobetafit" a "oxyuranopyrochlor") a Fe_{τoτ} = Fe²⁺ + Fe³⁺.

Diskuse a závěr

Naprosto dominantními zástupci Nb,Ta,Ti oxidické mineralizace v pegmatitu Maršíkov - Lysá hora jsou minerály skupiny columbitu doprovázené v minoritním množství rutilem, popřípadě minerály skupiny aeschynitu. Uvedená mineralizace náleží k primární (magmatické) etapě vývoje pegmatitového tělesa.

Pro minerály columbitové skupiny v beryl-columbitových pegmatitech silezika je charakteristická značná variabilita typů chemické zonálnosti (Černý et al. 1992; Novák et al. 2003a, b; Urbánek 2005; Chládek 2014). Tato strukturní variabilita se projevuje i u columbitu-(Fe,Mn) na lokalitě Maršíkov - Lysá hora, kde výrazně převažují oscilačně zonální, méně pak sektorově oscilačně zonální typy struktur, které velmi často přecházejí až do téměř homogenních partií v rámci téhož jedince. Odrazem strukturní variability minerálů skupiny columbitu jsou výrazné změny frakcionace Nb/Ta a Fe/Mn, vyjádřené poměry frakcionace Ta/(Ta+Nb) a Mn/(Mn+Fe), které jsou typické pro columbit-tantality z nejrůznějších LCT pegmatitů (např. Černý, Ercit 1989; Černý et al. 1992; Novák et al 2003a). Ve studovaných columbitech bylo dosaženo nízkého až středního stupně frakcionace s Nb>>Ta a Fe>>Mn, který je srovnatelný s columbity z klasických lokalit Bienergraben a Oplustilberg u Sobotína (Štosová 2009) nebo s izolovaným výskytem berylového pegmatitu na lokalitě Dämmbaude u Branné (Novák et al. 2003b). Naprostou absencí Ta-dominantních členů skupiny se pegmatit Lysá hora odlišuje od geochemicky výrazně frakcionovaných okolních pegmatitových těles (obr. 6), zejména klasického pegmatitu na lokalitě Maršíkov - Scheibengraben (Novák et al. 2003a). Majoritní prvky se ve strukturních pozicích *A* a *B* minerálů skupiny columbitu zastupují cestou homovalentních substitucí Ta \leftrightarrow Nb a Mn \leftrightarrow -Fe, které jsou obecně jejich převažujícím substitučním mechanizmem v columbit-tantalitech silezika (Urbánek 2005).

Titan je typickým minoritním prvkem, který vstupuje jako Ti4+ do pozice B rutilovým typem substituce (obr. 8) a jehož atomové proporce jsou ve studovaných columbitech nízké (0.3 apfu), a víceméně se výrazně neodlišují od jiných columbitů silezika. V pozdně magmatické pegmatoidní tavenině byla mobilita Ti4+ kontrolována krystalizací rutilu (včetně niobem bohatého rutilu), do něhož byla většina titanu zkoncentrována. Tato skutečnost je v souladu s běžnou kompatibilitou titanu, který je obyčejně zkoncentrován do nejstarších fází, případně do jádra zonálních krystalů (Ercit 1994). Mimoto část titanu byla zkoncentrována do titanem dominantního aeschynitu-(Ce). Columbit-(Fe) ze zájmového pegmatitu se vyznačuje podobně jako většina ostatních zjištěných columbitů v berylových pegmatitech jesenické oblasti nízkými obsahy minoritních prvků, zejména Sn⁴⁺, W⁶⁺ (v pozici *B*) nebo U⁴⁺, Y³⁺, Ca²⁺, Sc³⁺ (v pozici A). Přítomnost Fe³⁺ v columbit-tantalitech silezika je variabilní (např. Černý et al. 1992; Novák et al. 2003a,b). V columbitu-(Fe,Mn) z Lysé hory jsou zvýšené obsahy Fe3+ (max. 4 hm. % Fe₂O₂), nicméně z důvodu omezeného počtu analyzovaných bodů není znám mechanizmus vstupu Fe³⁺ do struktury columbitu. Zvýšené množství Fe³⁺ může být indikátorem měnících se oxidačních podmínek během krystalizace columbitu, wodginitu a tedy také nábojové nevyrovnanosti kationtových

pozic *A* a *B* columbitu (Johan a Johan 1994). Fe³⁺ a další R³⁺ jako například Sc³⁺ mají během tohoto stavu tendenci snižovat stupeň uspořádanosti struktury columbitu (např. Ercit 1994).

Aeschynit-(Ce) zjištěný pouze v asociaci s rutilem je v pegmatitu Maršíkov - Lysá hora vzácný a z berylového subtypu vzácnoprvkových pegmatitů silezika je zmiňován bez detailnějšího popisu pouze Urbánkem (2005) z lokality Maršíkov - Polesí. Zcela ojedinělá přítomnost CaTa₂O₆ dominantní fáze složením blízké rynersonitu ukazuje na určitou podobnost s geochemicky výrazně frakcionovanými Ta-Nb-Ti mineralizacemi na lokalitách Scheibengraben a Schinderhübel u Maršíkova (např. Černý et al. 1992; Novák et al. 2003a). Rynersonit je vzhledem k jeho velmi nízkému poměru Nb/Ta typický pro vysoce frakcionované pegmatity (Černý, Ercit 1989). Chemizmem blízké minerály skupiny euxenitu byly zjištěny v nedalekých granitoidech masivu Rudné hory u Maršíkova (Nejezchlebová et al. 2012).

Primární asociace Nb,Ta,Ti oxidů byla v následné hydrotermální etapě vývoje pegmatitu výrazně alterována, přičemž pozdně magmatická až hydrotermální metasomatická fluida způsobila přednostně zřetelnou texturní a chemickou reorganizaci rutil - aeschynitové asociace geneticky spjaté s agregáty chloritizovaného biotitu. Primární columbit-(Fe) (s výjimkou přítomnosti vzácně zjištěného sekundárního "oxyuranopyrochloru" na trhlině columbitu-(Fe)) a rutil z blokové jednotky nebyly výrazněji postiženy.

Minerály pyrochlorové superskupiny představují charakterististickou akcesorickou součást beryl-columbitových pegmatitů v okolí Maršíkova. V závislosti na odlišném stupni frakcionace typických texturně-paragenetických jednotek známých pegmatitových těles byly zjištěni zástupci minerálů všech "konvenčních" skupin (Hogarth 1977; Atencio et al. 2010), a to skupin mikrolitu, pyrochloru a nově také betafitu. V klasických lokalitách Scheibengraben a Schinderhübel u Maršíkova byli zjištěni jak primární tak sekundární zástupci skupin pyrochloru a mikrolitu. Uranový pyrochlor byl zjištěn v hrubě zrnité jednotce na lokalitě Maršíkov - Scheibengraben (Novák et al. 2003a) a v dalších jednotkách, například v jednotce cleavenlanditu byl určen primární uranový mikrolit v asociaci s tantalitem-(Mn) a sekundární uranový mikrolit zatlačující primární tantalit-(Mn). Na klasické lokalitě Schinderhübel I byl vzácně objeven primární uranem bohatý oxykalciomikrolit v asociaci s tantalitem-(Mn) v muskovitické jednotce (Černý et al. 1992; Chládek 2014). Uvedená asociace je nahrazena mladším hydrotermálním oxykalciomikrolitem. V žíle Schinderhübel III byla uvedená asociace vyhlazena následným tektono-metamorfním přetiskem (Černý et al. 1992). Pegmatit Maršíkov - Lysá hora se vyznačuje absencí jak primárních (s výjimkou vzácného rynersonitu) tak sekundárních Ta-bohatých fází a výrazně dominují Ti a Nb bohaté minerály typu rutil, columbit aj. Primární zástupci pyrochlorové superskupiny dosud nebyli nalezeni a asociace je omezena pouze na přítomnost sekundárních členů, které odpovídají dosud IMA neschváleným minerálům "oxyuranobetafitu" (snad analogickou fázi popisují Mokhov et al. 2008 z Měsíce) a "oxyuranopyrochloru" (ve smyslu klasifikace Atencio et al. 2010).

Uran je majoritním A-kationtem u všech studovaných betafitů i pyrochloru, které se od jiných okolních pegmatitů výrazně odlišují absencí Ca a Pb dominantních členů skupin a nízkými atomovými proporcemi jak Na, tak i Ca. Výrazné sekundární obohacení uranem a jeho detekční obsahy v columbitu a rutilu ukazují na jeho remobilizaci během hydrotermální etapy vývoje celé minerální asociace, kdy jeho možným zdrojem se jeví inkluze uraninitu, běžně zde asociujícího s rutilem a columbitem-(Fe), nebo může pocházet i z okolního horninového prostředí. Naopak obecně vysoké obsahy U a Na jsou považovány za jednu z charakteristik primárních mikrolitů a pyrochlorů v okolních výrazně frakcionovaných pegmatitových tělesech (Černý et al. 1992; Novák et al. 2003a) a na druhé straně nárůst vakancí (^A[□]) a Ca je indikátorem vzniku těchto minerálů během níže teplotních hydrotermálních procesů (Lumpkin, Ewing 1995).

Betafity a pyrochlor z Maršíkova - Lysé hory se vyznačují konzistentně vysokými obsahy Si a popřípadě Al. Tento rys, podobně jako vysoké proporce uranu, může poukazovat na stejný charakter zdroje pozdně magmatických (?) až hydrotermálně - metasomatických fluid, jejichž interakcí s primárním niobem bohatým rutilem a columbitem-(Fe) sekundární betafit a pyrochlor vznikly. Tato hydrotermální fluida zřetelně obohacená Si a Al jsou patrně spojena s krystalizací "mladých" silikátů typu alpské minerální asociace (Černý et al. 1992; Chládek 2014). Podobně vysokým obsahem Si se vyznačuje také sekundární oxykalciomikrolit z muskovitické jednotky na lokalitě Schinderhübel I (Chládek 2014), vznikající na úkor primárního tantalitu-(Mn). Problematika vystupování zejména křemíku v minerálech pyrochlorové superskupiny je dlouho diskutovaným problémem. Někteří autoři vysvětlují přítomnost Si ve formě rozptýlené krystalické nebo amorfní silikátové fáze (Hogarth 1977; Voloshin et al. 1989). Bonnazzi et al. (2006) předpokládá, že křemík není dominantně strukturně vázán, ale že jeho větší podíl (50-70%) je zkoncentrován v metamiktizovaných partiích. Současná nomenklatura (Atencio et al. 2010) poukazuje na jeho možnou strukturní roli v pozici B, o čemž mohou mimo jiné vypovídat také charakteristiky sekundárního oxykalciomikrolitu na lokalitě Schinderhübel I (Chládek 2014) anebo výsledky studia Uhera et al. (1998). Všechny betafity i pyrochlor vykazují zvýšené obsahy P (v průměru 1.5 hm. % P₂O₂). Takto zvýšené koncentrace fosforu mohou být vysvětleny dvojí cestou. Přestože P nemá dosud prokázanou krystalochemickou roli v pyrochlorové struktuře, tak kubická struktura minerálů pyrochlorové skupiny dovoluje na základě svých vlastností vstup kationtů různých valencí do strukturních pozic A, B, X a Y (Atencio et al. 2010) a zdrojem P mohou být relikty fosfátu, který byl během hydrotermálně-metasomatických procesů výrazně alterován a následnou remobilizací P5+ mohly být studované fáze obohaceny. Tuto teorii může podpořit nevýrazná záporná korelace mezi P + Al a Si uvažující vstup P⁵⁺ cestou berlinitové substituce P⁵⁺ + Al³⁺ \leftrightarrow 2Si⁴⁺ do strukturní pozice B. Fosfor byl celosvětově dosud zcela výiimečně detekován v minerálech superskupiny pyrochloru a podobně se charakteristickým obohacením P (max. 3.8 hm. % P₂O₅) vyznačuje také uranem dominantní pyrochlor hydrotermálního původu zjištěný v exotické asociaci zahrnující fersmit, brannerit, titanoixiolit, tantalit -(Mn) aj. v pegmatitech v provincii Borborema v Brazílii (Beurlen et al. 2005). Mezi další argumenty náleží také fakt mírně zvýšeného Th (max. 0.72 hm. % ThO₂), osobité přítomnosti Si ve studovaných betafitech a pyrochloru, na druhou stranu také přítomnost monazitu-(Ce) ale zejména alterovaného cheralitu (Ca, Th, PO, v blízkosti coffinitu a zirkonu v agregátu chloritizovaného biotitu. Cheralit byl zjištěn také blízkosti granátu almandin-spessartinového složení v blokové jednotce. Na druhou stranu nemůže být zcela vyloučena také přítomnost Ca, Th-fosfátu v těsné blízkosti zrn rutilu.

Lysá hora u Maršíkova představuje další významný beryl-columbitový pegmatit, který se od jemu prostorově blízkých klasických pegmatitových těles oblasti výrazně neodlišuje. Přesto zjištěná komplexní minerální asociace výrazně obohacená Nb+Ti+U±REE ukazuje, že studovaný pegmatit vykazuje znaky geochemicky primitivnějšího beryl-columbitového subtypu vzácnoprvkových pegmatitů.

Poděkování

Je milou povinností autorů poděkovat panu Mgr. Radku Škodovi, Ph.D. za analytickou práci na elektronové mikrosondě na ÚGV MU v Brně a dále za cenné připomínky panu prof. Milanu Novákovi, CSc. a panu prof. Pavlu Uherovi, CSc., které výrazně zvýšily kvalitu příspěvku. Tato práce byla podpořena Agenturou na podporu výzkumu a vývoje na základě smlouvy APVV-14-0278.

Literatura

- Atencio D., Andrade B., Christy A., Gieré R., Kartashov P. (2010) The pyrochlore supergroup of minerals: Nomenclature. *Can. Mineral.* 48, 673-698.
- Beurlen H., Soares D. R., Thomas R., Prado-Borges L. E., Castro C. (2005) Mineral chemistry of tantalate species new in the Borborema Pegmatitic Province, Northeast Brazil. Annals of the Brazilian Academy of Sciences 77, 169-182.
- Bonazzi P., Bindi L., Zoppi M., Capitani G. C., Olmi F. (2006) Single-crystal diffraction and transmission electron microscopy studies of "silicified" pyrochlore from Narssârssuk, Julianehaab district, Greenland. *Am. Mineral.* 91, 794-801.
- Černý P. (1991) Rare-element granitic pegmatites II: Regional to global environments and Petrogenesis. Geosc. Canada 18, 68-81.
- Černý P., Ercit T. S. (1989) Mineralogy of Niobium and Tantalum: crystal chemical relationships, paragenetic aspects and their economic implications. *In: Möller P., Černý P., Saupé F. (ed.): "Lanthanoides, Tantalum* and Niobium", 27-79. Springer-Verlag. Heidelberg.
- Černý P., Novák M., Chapman R. (1992) Effects of sillimanite-grade metamorphism and shearing on Nb,Ta -oxide minerals in granitic pegmatites: Maršíkov, northern Moravia, Czechoslovakia. *Can. Mineral.* 30, 699-718.
- Černý P., Novák M., Chapman R. (1995) The AI (Nb,Ta) Ti-2 substitution in titanite: the emergence of a new species? *Mineral. Petrol.* 52, 61-73.
- Ercit T. S. (1994) The geochemistry and crystal chemistry of columbite-group minerals from granitic pegmatites, southwestern Grenville Province, Canadian Shield. *Can. Mineral.* 32, 421-438.
- Hatert F., Burke E. A. J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. *Can. Mineral.* 46, 717-728.
- Hogarth D. D. (1977) Classification and nomenclature of the pyrochlore group. Am. Mineral. 62, 403-410.
- Chakhmouradian A. R., Mitchell R. H. (2002) New data on pyrochlore and perovskite-group minerals from the Lovozero alkaline complex, Russia. *Eur. J. Mineral. 14, 821-836.*
- Chládek Š. (2011) Mineralogická charakteristika pegmatitu na Lysé hoře u Maršíkova v Hrubém Jeseníku. MS, bakalářská práce, PřF UP Olomouc.
- Chládek Š. (2014) Primární a sekundární trendy ve vývoji Nb-Ta oxidických minerálů v pegmatitu na lokalitě Schinderhübel u Maršíkova. *MS, diplom. práce, PřF UP Olomouc.*

- Chládek Š., Zimák J. (2012) Unikátní nález berylu v pegmatitu na Lysé hoře u Maršíkova. *Minerál 20, 6, 488-494.*
- Johan V., Johan Z. (1994) Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech republic, Part 1: Nb-, Ta- and Ti-bearing oxides. *Mineral. Petrol.* 51, 323-343.
- Lumpkin G. R., Ewing R. C. (1995) Geochemical alteration of pyrochlore group minerals: pyrochlore subgroup. Am. Mineral. 80, 732-743.
- Nejezchlebová L., Zimák J., René M. (2012) Granitoidy intruze Rudné hory v Hrubém Jeseníku a jejich akcesorie. Zpr. Vlastivěd. Muz. Olomouc 303, 113-117.
- Novák M. (2005) Granitické pegmatity Českého masivu (Česká republika), mineralogická, geochemická a regionální klasifikace a geologický význam. Acta Mus. Moraviae, Sci. geol. 90, 3-74.
- Novák M., Černý P., Uher P. (2003a) Extreme variation and apparent reversal of Nb-Ta fractionation in columbite-group minerals from the Scheibengraben berylcolumbite pegmatite, Maršíkov, Czech Republic. *Eur. J. Mineral.* 15, 565-574.
- Novák M., Nepejchal M., Škoda R., Urbánek B. (2003b) Beryl-columbitový pegmatit z Branné, Hrubý Jeseník. *Acta Mus. Moraviae, Sci. Geol. 88, 113-122.*
- Mokhov A. V., Kartashov P. M., Bogatikov O. A., Ashikhmina N. A., Magazina L. O., Koporulina E. V. (2008) Fluorite, hatchettolite, calcium sulfate, and bastnasite -(Ce) in the lunar regolith from Mare Crisium. *Doklady Earth Sciences 422, 1178-1180.*
- Štosová V. (2009) Mineralogie beryl-columbitových pegmatitů severovýchodní části Českého masivu. MS, diplom. práce, PřF UP Olomouc.
- Uher P., Černý P., Chapman R., Határ J., Miko O. (1998) Evolution of Nb,Ta-oxide minerals in the Prašivá granitic pegmatites, Slovakia. II. External hydrothermal Pb,Sb overprint. *Can. Mineral.* 36, 535-545.
- Urbánek B. (2005) Frakcionace Nb/Ta a Fe/Mn v minerálech skupiny columbitu z granitických pegmatitů Hrubého Jeseníku. MS, *diplom. práce, PřF MU Brno.*
- Voloshin A. V., Pakhomovskiy Ya. A., Pushcharovskiy L. Yu., Nadezhina T. N., Bakhchisaraytsev A. Y., Kobyashev Yu. S. (1989) Strontium pyrochlore: composition and structure. *Novye Dannye Mineral. SSSR*. 36, 12-24.
- Zimák J., Chládek Š. (2008) Beryl-columbitový pegmatit na Lysé hoře u Maršíkova. *Minerál 16, 6, 491-493*.