Revision of Quedius sensu stricto (Coleoptera: Staphylinidae)

Aslak Kappel HANSEN ${ }^{1,2,3}$, Adam BRUNKE ${ }^{4)}$, Thomas SIMONSEN ${ }^{2)}$ \& Alexey SOLODOVNIKOV ${ }^{1,5}$
${ }^{1}$ Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, 2100 Copenhagen, Denmark; e-mails: akhansen@snm.ku.dk; asolodovnikov@snm.ku.dk
${ }^{2)}$ Natural History Museum Aarhus, Wilhelm Meyers Allé 10, 8000 Aarhus, Denmark
${ }^{3}$) Department of Bioscience, University of Aarhus, Ny Munkegade 116, 8000 Aarhus, Denmark
${ }^{4}$) Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
${ }^{5}$) Zoological Institute, Russian Academy of Science, Universitetskaja nab. 1, St. Petersburg, 199034, Russia

Accepted:
$30^{\text {th }}$ May 2022
Published online:
$26^{\text {th }}$ November 2022

Abstract

We here present the first integrative revision of the subgenus Quedius Stephens, 1829 sensu stricto where taxonomic decisions are based on morphology, genomic phylogeny (published elsewhere) and single locus DNA evidence. The subgenus is restricted to the Holarctic region and includes some of the largest, most robust members of the genus Quedius. For species delimitation, a total of 200 COI barcodes covering nearly all species within the subgenus were evaluated through phylogenetic, cluster and network analysis. Taxonomic, distributional and bionomic data, all hitherto published and new are synthesized and an identification key is constructed for all species. All 20 species of Quedius s. str. are divided into five species groups based on genomic phylogeny, morphology, distributional patterns and practical considerations. Overall, there was good congruence among various lines of evidence. As exceptions, high COI barcode variability was found within the wingless and patchily distributed Q. unicolor Kiesenwetter, 1847 and Q. sundukovi Smetana, 2003 (3 and 5 BOLD BINs, respectively) from the Q. molochinus-group without corresponding morphological or geographic patterns. On the contrary, in the Q.palli-pes-group very little divergence in the COI barcode was found between clearly morphologically separated species. From the taxonomically challenging Nearctic Quedius molochinoides-group, Quedius altanai Hansen \& Brunke sp. nov. is described as new species from the central and southern Rockies, rendering Q. lanei Hatch, 1957 to be restricted to the eastern foothills of the Cascades, Sierra Nevada and Blue Mountains. In the case of Q. subunicolor and Q. altaicus, continuous morphological and COI variation firmly established the earlier suspected synonymy Quedius subunicolor Korge, 1961 = Quedius altaicus Korge, 1962 syn. nov. Other new synonyms established here are: Quedius pallipes Lucas, 1849 = Quedius simplicifrons Fairmaire, 1861 syn. nov. = Quedius levasseuri Coiffait, 1964 syn. nov.; Quedius hispanicus Bernhauer, 1898 stat. reinstituted = Quedius cobosi Coiffait, 1964 syn. nov.; Quedius fuliginosus (Gravenhorst, $1802)=$ Quedius latus Hochhuth, 1851 syn. nov. $=$ Quedius viduus Sawada, 1965, syn. nov. Quedius gracilis Stephens, 1832 syn. rev. is moved from synonymy with Q. fuliginosus and placed into synonymy with Q. curtipennis Bernhauer, 1908, the younger being the valid name due to prevailing usage in accordance with the ICZN Article 23.9; Quedius hammianus Sharp, 1911 syn. revid., Q. secundus Last, 1952 syn. revid., and Q. rufulus Blümml, 1898 syn. revid., are moved from synonymy with Q. simplicifrons and placed into synonymy with Q. hispanicus Bernhauer, 1898; Quedius sardous Gridelli, 1924 syn. revid., and Q. leonhardi Bernhauer, 1914 syn. revid., are moved from synonymy with Q. molochinus (Gravenhorst, 1806) to synonymy with Q. pallipes. Human mediated dispersals, most likely through the historical transport of ship ballast, are noted as regular phenomenon for some members of the subgenus. Quedius fuliginosus, Q. curtipennis and Q. molochinus, introduced from the Palearctic to the Nearctic, are the most noticeable examples.

Key words. Coleoptera, Staphylinidae, Quediini, integrative taxonomy, barcoding, species delimitation, phylogeny, network analysis, COI gene, biogeography, human mediated dispersal, Holarctic Region

Introduction

We revise the rove beetle subgenus Quedius Stephens, 1829 sensu stricto, which includes some of the largest, most robust members of the genus Quedius. Quedius sensu lato is a very large and non-monophyletic taxon found across most of the Northern hemisphere with more than 700 species currently known (Smetana 1971, 2017; Herman 2001; Solodovnikov 2012; Brunke et al. 2016). The current classification of Quedius has not yet been updated to accommodate recent phylogenetic results, which have unambiguously demonstrated that the genus is polyphyletic, especially with respect to the species rich subgenera Raphirus Stephens, 1829 and Microsaurus Dejean, 1833 (Solodovnikov 2006; Brunke et al. 2016, 2019, 2021). On the other hand, the monophyly of the morphologically uniform Quedius s. str. has not been challenged in any of these studies, and is in fact firmly confirmed in a large-scale genomic study of the tribe Quediini (Brunke et al. 2021). That study includes members of nearly all known species groups of Quedius s. str. and recovered them as a monophyletic sister group to a clade comprising Quetarsius Smetana, 1996 and the pluvialis, meei, bleptikos, himalayicus groups of the Quedius lineage (Brunke et al. 2021). Another as yet unpublished phylogenomic and biogeographic study by the authors includes almost all members of Quedius s. str., and
we use the phylogenetic topology of that study as a guide for the division of Quedius s. str. into species groups in this revision (Fig. 1) (A. Hansen et al., in prep.).

All Quedius s. str. are active ground-living predators, and are often found in or around moist debris, tussocks and mosses. They are thus often associated with water bodies, such as lakes, rivers, swamps, but also saline coastal habitats (Fig. 2; Smetana 1971, Solodovnikov 2012, Salnitska \& Solodovnikov 2019; A. Hansen, pers. observ.). They are regularly sifted out from leaf litter or collected by pitfall traps. Quedius s. str. is distributed across the Holarctic Region, with the Palearctic species found in Europe, Northern Africa, Middle East and Middle Asian mountains, and across Siberia to the Far East of Russia. The Nearctic species are found in most areas of North America except the southwest, Arctic, and much of the Great Plains and Canadian Prairies of the continent. Several species have been moved around by humans and thus display unnatural distributions. Some species of Quedius s. str. are very common in collections, but most representatives of the group are rare. Instead, they are represented by a single or a handful individuals at most.

Although they are relatively well-known, a taxonomic revision of the genus Quedius s. str. is needed, mainly to clarify the identity and distributions of the clusters of

Fig. 1. Phylogenetic tree of Quedius s. str. based on preliminary target capture molecular dataset of Brunke et al. (2021) and Hansen et al. (in prep). Species groups shown in color. Q. altanai Hansen \& Brunke, sp. nov. of the Q. molochinoides-group was not included in the dataset. Habitus sketch is of Q. fuliginosus (Gravenhorst, 1802). Lettering denotes species distribution within their respective groups.

Fig. 2. Habitats of Quedius s. str. A - Q. fuliginosus (Gravenhorst, 1802) in mossy habitat in a forest on Zealand, Denmark; B - Oak forest habitat of Q. levicollis Brullé, 1832 found in litter in Extremadura, Spain; C - Saline lake habitat of Q. meridiocarpathicus Smetana, 1958 found in bank litter on Peloponese, Greece; D - River bank habitat of Q. hispanicus Bernhauer, 1898 found in flood debris in Extremadura, Spain; E - Wet mixed forest habitat of Q. fuliginosus found in litter in Southern Ural, Russia; F - Alpine near tree line habitat of Q. subunicolor Korge, 1961 found under stones at 1700 m in Altai Mountains, Russia; G - Alpine mossy creek habitat of Q. unicolor Kiesenwetter, 1847 found in moss in Italian Alps (Photo: A. Zanetti).
similar species that have been frequently confused in the past. In the emerging phylogenetic framework of Quediini, Quedius s. str. stands out as a well-defined group with a high potential to serve as a model to address various questions about Holarctic ecology and biogeography. For example, they display a clear Nearctic-Palearctic split, as well as species varying in habitat specificity. We here summarize available data for Quedius s. str., including taxonomy, geographical distributions and bionomics. A major focus is to clarify the limits and distributions of several species that historically have been mixed due to their very similar external appearance, which led to a wealth of uncertainty regarding the distribution and their exact characteristics. For that reason, this revision is based on quantitative methods as much as possible, such as species delimitation with cytochrome oxidase I (COI) barcodes and network analysis. The main body of the revision includes morphological diagnoses, mapped distributions, bionomic profiles, as well as an identification key for all species. Immature stages have been outside the scope of this revision, but when available, references to such are mentioned, and future studies will hopefully shed more light on this neglected part of the life cycle. It is the ambition of the current study that it will help to improve further studies of the genus Quedius as well as rove beetles in general.

Taxonomic history

The genus Quedius was erected for seven valid species and 32 unavailable names. The authorship of the genus has been disputed, as Curtis (1829) and Stephens (1829) both named Quedius in the same year, and there has been found no evidence of the exact dates of publication of these two authors. According to the ICZN, Stephens (1829) is the author of Quedius because Tottenham (1949), the first revisor, gave him preference over Curtis (1829). This is summarized in Smetana (1995: 56), as the same problem has persisted for Philonthus Stephens, 1829. Furthermore, Stephens (1829) attributed the genus to Leach without mentioning a reference. As there is no evidence that Leach formally described and validated the genus, Stephens (1829) has become the formal author. Also, the type species of Quedius Stephens, 1829 has been cited as 'Staphylinus tristis Gravenhorst, 1802' but as this is not an available name for the relevant taxon, this problem was discussed in Newton (1995) with subsequent action by the ICZN, which designated Staphylinus levicollis Brullé, 1832 as the type species of Quedius in the Opinion 1851 (ICZN 1996).

The classification of Quedius was in flux for a long time, while a few subgenera were proposed. The composition and status of these subgenera were shifting between genus and subgenus rank. For example, both Raphirus Stephens, 1829 and Microsaurus Dejean, 1833, currently the biggest subgenera of Quedius, were originally proposed as genera. Mulsant \& Rey (1876) were the first to use the broad concept of Quedius, which included Microsaurus and others as subgenera. They assigned species from what we currently understand as the subgenus Quedius s. str. to Microsaurus. A modern definition of Quedius s. str. and
other subgenera starts with the revision of Quedius by Gridelli (1924) who recognized members of Quedius s. str. by the entire labrum, a character which is still one of the main diagnostic characters of the subgenus. The first species placed currently in Quedius s. str. were described by Gravenhorst $(1802,1806)$ in Staphylinus Linnaeus, 1758 prior to the fixation of the genus by Stephens. These included Q. fuliginosus (Gravenhorst, 1802), Q. molochinus (Gravenhorst 1806) and the North American species Q. laticollis (Gravenhorst, 1802). Even after Quedius was formally named, a few species now placed in Quedius s. str. were still being described in Staphylinus, for example, Q. levicollis (Brullé, 1832) and Q. vicinus (Ménétriés, 1832). Years later, species like Q. unicolor Kiesenwetter, 1847, Q. pallipes Lucas, 1849, Q. hispanicus Bernhauer, 1898 and Q. curtipennis Bernhauer, 1908, were described in Quedius.

During the mid 1900s, several additional species were discovered when local faunas throughout Europe were investigated more thoroughly. In this period several countries or geographic regions in Europe were subjected to their first proper taxonomic revisions, keys or ecological reviews that included Quedius s. str. These include the publications of Tottenham (1949); Hansen (1952); Smetana (1958, 1960b, 1962); Coiffait (1961, 1964); Palm (1963); LohSE (1964); Horion (1965) and Bordoni (1976). This led to the discovery of additional rare species, or species from areas not yet fully explored, including Q. balticus Korge, 1960, Q. meridiocarpathicus Smetana, 1958, and Q. subunicolor Korge, 1961. In fact, the taxonomic publications of Horst Korge should be highlighted in this context since some of them were specifically focussed on species of Quedius s. str. in the Western Palearctic (Korge 1960a,b, 1961, 1962a,b). This period was concluded by Coiffait (1978), who made the first attempt to summarize the whole quediine fauna of the Western Palearctic.

Although the first species of Quedius s. str. from North America, Q. laticollis, was described as early as in Gravenhorst (1802), the new world fauna was not thoroughly explored until much later. Currently the genus has been reviewed three times in North America. First by Horn (1878), later by Casey (1915) and most recently by Smetana (1971a), with supplements in SmeTANA (1971b, 1973, 1976, 1978, 1981 and 1990). Apart from that, some species were added by Нatch (1957), who revised the beetle fauna of the Pacific Northwest in North America.

After the monographs of Smetana (1971) and Coiffait (1978) there has been no attempt to synthesize the knowledge of the subgenus Quedius s. str. for either the entire Nearctic or Palearctic. There were only more or less inclusive new data on Quedius s. str. published for these regions in Lott \& Anderson (2011), Solodovnikov (2012) and Salnitska \& Solodovnikov (2018a, 2019), including the description of two additional species, Q. afrofuliginosus Gusarov, 1991 and Q. sundukovi Smetana, 2003. This study is the first comprehensive revision of Quedius sensu stricto, with the Palearctic and Nearctic faunas of this lineage considered in their integrity.

Material and methods

Material. This study is based on 2543 specimens (Table S1) that are deposited in the following collections:

AFC Atlantic Forestry Centre, Natural Resources Canada, Canadian Forest Service, Fredericton, New Brunswick, Canada (R.P. Webster);
AMNH American Museum of Natural History, New York, New York, USA (L. Herman);
CAS California Academy of Sciences, San Francisco, California, USA (C. Grinter);
CBU Cape Breton University, Sydney, Nova Scotia (D.B. McCorquodale);
CMNH Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA (J. Fetzner);
CNC Canadian National Collection of Insects, Arachnids and Nematodes, Ontario, Canada (A. Smetana \& A. Brunke);
CUIC Cornell University, Ithaca, New York, USA (C. Moreau);
cAnl Personal collection of S. Anlaş, İzmir, Turkey;
cBor Personal collection of A. Bordoni, Firenze, Italy;
cCha Personal collection of C. Chantel, Quebec City, Quebec, Canada;
cCor Personal collection of J. F. Cornell, Boone, North Carolina, USA;
cHoLa Personal collection of R. R. Hooper and H. Lambert, Sillery, Quebec, Canada;
cJen Personal collection of J. Jenkins Shaw, London, UK;
cKur Personal collection of S. A. Kurbatov, Moscow, Russia;
cNel Personal collection of G. H. Nelson, Kansas City, Missouri, USA;
cMaj Personal collection of C. C. Majka, Halifax, Canada;
cMil Personal collection of W. V. Miller, Ramsey, New Jersey, USA;
cSch Personal collection of M. Schülke, property of ZMHB;
cSha Personal collection of A. Shavrin, Daugavpils, Latvia;
cSme Personal collection of A. Smetana, property of National Museum of Nature and Science Tsukuba, Japan;
cWeb Personal collection of D. Webster, Kentville, Nova Scotia, Canada;
DEBU University of Guelph, Guelph, Ontario, Canada (S. Paiero, S. Marshall);
DBUM University of Montreal, Collection Entomologique Ouellet--Robert, Montreal, Quebec, Canada (C. Favret);
FMNH Field Museum of Natural History, Illinois, USA (M. Thayer, A. Newton, S. Ware \& M. Tucatel);

INHS Illinois Natural History Survey, Champaign, Illinois, USA (T. McElrath);
ISU Iowa State University, Ames, Iowa, USA (G. Courtney);
MCZ Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA (C. Maier);
MNCN Museo Nacional de Ciencias Naturales, Madrid, Spain (M. Alonso-Zarazaga);
MNHN Muséum National d'Histoire Naturelle, Paris, France (O. Montreuil);
MUNC Memorial University of Newfoundland, St. John's, Newfoundland (D. Larson);
MZH Finnish Museum of Natural History, Helsinki, Finland (S. Tarasov, J. Mattila, and P. Malinen);
MZLU Lund Museum of Zoology, Lund, Sweden (C. Fägerström);
NHMD Zoological Museum, Natural History Museum of Denmark, University of Copenhagen, Denmark (A. Solodovnikov);
NMEG Naturkundesmuseum, Erfurt, Germany (M. Hartmann);
NMPC National Museum, Prague, Czech Republic (J. Hájek);
NMW Naturhistorisches Museum Wien, Vienna, Austria (H. Schillhammer);
NSMC Nova Scotia Museum, Halifax, Nova Scotia, Canada (C. Majka);
NSNR Nova Scotia Department of Natural Resources, Shubenacadie, Nova Scotia, Canada (J. Ogden);
OSU Ohio State University, C.A. Triplehorn Insect Collection, Columbus, Ohio, USA (L. Musetti);
SDEI Senckenberg Deutsches Entomologisches Institut, Müncheberg, Germany (S. Blank);

SMNH Royal Saskatchewan Museum, Regina, Saskatchewan, Canada (C. Sheffield);

SNMC Slovenské Národné Muzeum, Bratislava, Slovakia (V. Jánský);
STFX St. Francis Xavier University, Antigonish, Nova Scotia (R. Lauff);
TAMU Texas A \& M University, College Station, Texas, USA (J. Oswald);
UAM University of Alaska Museum, Entomology Collection, Fairbanks, Alaska, USA (D. Sikes);
UASM University of Alberta, E.H. Strickland Entomological Museum, Edmonton, Alberta, Canada (F. Sperling);
UBC University of British Columbia, Spencer Museum, Vancouver, British Columbia, Canada (K. Needham);
UNHC University of New Hampshire, Durham, New Hampshire, USA (D. Chandler);

USNM Smithsonian Institute, National Museum of Natural History, Washington D.C., U.S.A. (D. Furth \& F. Shockley);
UWBM University of Washington, Burke Museum, Seattle, Washington, USA (R. Crawford);
ZIN Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia (B. Korotyaev \& M. Salnitska);
ZMHB Museum für Naturkunde, Berlin, Germany (J. Frisch \& M. Uhlig);
ZMMU Zoological Museum of Moscow State University (A. Gusakov);
ZMUO Zoologiska Muset, Universitets Oulu, Oulu, Finland (M. Mutanen).

We attempted to study type material as far as possible except cases where it was not necessary because of clear taxonomy. In some cases, we were unable to study type specimens themselves but we received their informative images instead. For the type specimens we examined, labels are transcribed fully, which is indicated by denoting label information by quotation marks ("") where each particular label start and end is denoted by a slash (/). For the non-type material label data, when unambiguously interpreted, is recorded as follows, independent of the actual wording on labels or their order: COUNTRY: State: Locality, Latitude, Longitude, Elevation, Collecting method, Habitat notes, Date, Collector, (number of specimens and their sex, Collection). Square brackets [] are used for our interpretation of ambiguous label data and for georeferencing labels without coordinates (e.g. finding geographic coordinates for toponyms via Google Maps or similar tools).

Distribution maps were constructed in Simplemappr (Shorthouse 2010) using coordinates either available on labels or found for given localities using Google Maps searches. For the North American species, we use the ecoregion defined through the Commission for Environmental Cooperation (1997) for discussion and detailed definition of distribution.

Morphological study. Specimens were examined using a Leica MZ APO Stereoscope. Aedeagi were dissected after the detached terminalia (aedeagus, abdominal segments IX and X) were removed and cleared in a 10% KOH (Potassium hydroxide) aqueous solution for 30 to 90 minutes at room temperature depending on the degree of sclerotization. Dissected aedeagi were either mounted directly on the card of the specimen or put in glycerin filled microvial pinned with their respective specimen. Measurements were performed on 10 specimens (5 males and 5 females) from each species if available using ocular
micrometer on the Leica MZ APO Stereoscope. For long series, specimens for measurements were chosen based on the visual examination of the whole series to include the entire body size range. All measurements are given in millimeters (mm) or ratios. The following measurements have been taken:

HL	head length (along midline from the anterior clypeal margin to the occipital constriction);
HW	head width (maximal, including eyes);
EyL	eye length (in dorsal view);
TL	temple length (in dorsal view);
PL	pronotum length (along midline); pronotum width (maximal);
PW	elytral length (maximal, from shoulders to the distalmost point of the posterior margin of elytra);
EW	elytral width (maximal); elytral sutural length (along suture, from tip of scutellum to sutural angle).
Esut	

Forebody length (HL $+\mathrm{PL}+\mathrm{EL}$) is used in addition to the total body length due to the contractile abdomen of Staphylinidae making total body length difficult to measure accurately.

Photographs were taken using a Canon 5D Mark III with the Canon MP-E 65 mm 1-5x Macro Lens fitted. Stacking was performed with the StackShot 3X Macro Rail with 20 to 25 photos stacked using the PMa function in Zerene Stacker. Post-processing of images in Adobe Photoshop CC included adding a scale bar and removing dust using the Healing Brush Tool. Head and habitus illustrations were drawn in Adobe Illustrator using reference images. Aedeagus drawings were made free hand with the camera lucida attached to the dissecting scope and inked digitally using Adobe Illustrator software.
Molecular data. We target the barcode fragment of the mitochondrial cytochrome oxidase I gene (COI) as it is the most commonly used marker in species delimitation studies in animals including several rove beetles studies (Hendrich et al. 2015, Klimaszewski et al. 2019, Brunke et al. 2020, Hu et al. 2020). There is thus a large pool of COI barcode sequences available in databases such as Barcode of Life Datasystems v4 (BOLD) (http:// www.boldsystems.org) and GenBank (https://www.ncbi. nlm.nih.gov/genbank/). A further advantage is that COI, like other mitochondrial genes, has a high abundance in especially muscle tissue, which increases the success rate in older museum specimens for sequencing. This makes it possible to target older specimens that may be critical for resolving species boundaries questions. Genomic DNA was extracted from a single leg of each target specimen. Both pinned museum and alcohol preserved specimens were used. DNA extraction, PCR amplification and bi-directional sequencing of the COI barcode fragment were performed by The Canadian Centre for DNA Barcoding (CCDB) (Guelph, Ontario, Canada). All newly generated sequences were uploaded to BOLD and were assigned BINs (Barcode Index Numbers, Ratnasingham \& Hebert (2013)) if they were longer than 500bp and contained less than 1% ambiguous bases. Using the BOLD workbench, we performed a sequence cluster analysis with the refined single-linkage algorithm
of Ratnasingham \& Hebert (2013) to identify potential Operational Taxonomic Units (OTUs). Novel sequences were made public in BOLD under the following process IDs (QUEDA126-18, QUEDA127-18, QUEDA128-18, QUEDA129-18, QUEDA130-18, QUEDA131-18, QUEDA132-18, QUEDA133-18, QUEDA134-18, QUEDA135-18, QUEDA137-18, QUEDB073-19, QUEDB078-19, QUEDB080-19, QUEDB082-19, QUEDB086-19, QUEDB087-19, QUEDB089-19, QUEDB090-19, QUEDC001-19, QUEDC003-19, QUEDC005-19, QUEDC006-19, QUEDC007-19, QUEDC008-19, QUEDC009-19, QUEDC011-19, QUEDC012-19, QUEDC013-19, QUEDC014-19, QUEDC015-19, QUEDC016-19, QUEDC017-19, QUEDC018-19, QUEDC019-19, QUEDC021-19, QUEDC022-19, QUEDC023-19, QUEDC024-19, QUEDC025-19, QUEDC026-19, QUEDC027-19, QUEDC029-19, QUEDC030-19, QUEDC031-19, QUEDC033-19, QUEDC034-19, QUEDC036-19, QUEDC037-19, QUEDC038-19, QUEDC039-19, QUEDC040-19, QUEDC042-19, QUEDC043-19, QUEDC044-19, QUEDC045-19, QUEDC046-19, QUEDC047-19, QUEDC051-19, QUEDC052-19, QUEDC053-19, QUEDC054-19, QUEDC056-19, QUEDC057-19, QUEDC060-19, QUEDC061-19).

Sequence alignment, phylogenetic and network analysis. All new and previously published sequences were imported to Geneious Prime v.2019.2.3 and aligned using the MAFFT Multiple Alignment v.1.4.0 plugin based on MAFFT (Катон et al. 2002). Using the Species Delimiter plugin (MASTERS et al. 2011) in Geneious we calculated the average pairwise intraspecific tree distance within species clusters and the interspecific distance to nearest neighbor. The complete alignment was exported, partitioned by codon and submitted to PartitionFinder2 (LaNFEAR et al. 2017) run on the CIPRES Science Gateway v3.3 (phylo.org). A search for the best substitution models was selected under the Bayesian Information Criterion using the following settings: models choice $=$ all, branch lengths $=$ unlinked, and search choice = greedy. Two separate phylogenetic analyses were conducted using the best partition and substitution model found by PartitionFinder2: a Maximum Likelihood (ML) analysis using IQ-Tree v.1.6.10 (Nguyen et al. 2015) and a Bayesian analysis (BI) using MrBayes v.3.2.7a (Ronquist et al. 2012). Both analyses were run on CIPRES. The ML analysis in IQ-Tree was set up with default settings except: Ultrafast Bootstrap (UFP) was run for 1000 iterations (-bb 1000), then re-run with up to 10,000 iterations ($-\mathrm{nm} 10,000$) with a SH-aLRT test (-sh_test true) and run for 1000 iterations (-alrt 1000). The BI analysis consisted of two runs of four chains each, with default settings except that different rates of evolution were allowed in different partitions (ratepr $=$ variable). Convergence was examined manually by checking the Potential Scale Reduction Factor (PSRF) in Tracer v1.7.1 (Rambaut et al. 2018). For each analysis we considered posterior probability values (PP) ≥ 0.90, SH-aLRT ≥ 80, and UFB ≥ 95 to indicate clade support, respectively.

Table 1. List of DNA barcode sequences generated and used for this study. Sequences excluded from analysis as potential contaminations (*) or because of bad sequence quality $\left({ }^{* *}\right)$ are marked in column with sequence length (bp).

Specimen ID	Process ID	Species	bp	BIN	Novel	Locality
CNCAJB19-103	QUEDC003-19	afrofuliginosus	658	BOLD:AEC2087	novel	France: Corse
CNCAJB19-156	QUEDC056-19	altanai	408*	BOLD:AEC1928	novel	Arizona: Apache Co.
CNCAJB19-157	QUEDC057-19	altanai	408		novel	Colorado: Red Mt. Pass
CNCAJB19-114	QUEDC014-19	altaicus	408	BOLD:AEC1928	novel	Russia: Lake Baikal
CNCAJB19-161	QUEDC061-19	altaicus	658	BOLD:AEC1928	novel	Russia: Altai
CNCAJB19-101	QUEDC001-19	altaicus	408	BOLD:AEC1928	novel	Russia: Altai
ZMUO. 000630	COLFA400-12	balticus	658	BOLD:ABW4895		Finland: Oulu
CNCAJB19-136	QUEDC036-19	curtipennis	308		novel	Spain: Pyrenees
JX626086	GBCL63837-19	curtipennis	404**			Portugal: Azores
BIOUG12664-D05	SSROA3162-14	curtipennis	514	BOLD:AAZ0388		Ontaria: Toronto
CNCAJB 19-134	QUEDC034-19	curtipennis	308		novel	Faroe Islands
BIOUG26579-E07	POBGD124-15	curtipennis	475	BOLD:AAZ0388		Quebec: Montreal
JX626108	GBCL64397-19	curtipennis	454	BOLD:AAZ0388		Portugal: Azores
JX626087	GBCL63818-19	curtipennis	454	BOLD:AAZ0388		Portugal: Azores
JX626088	GBCL63819-19	curtipennis	454	BOLD:AAZ0388		Portugal: Azores
JX626085	GBCL63839-19	curtipennis	454	BOLD:AAZ0388		Portugal: Azores
JX626084	GBCL63838-19	curtipennis	454	BOLD:AAZ0388		Portugal: Azores
BIOUG08060-F10	RBINA5440-13	curtipennis	568	BOLD:AAZ0388		Ontario: Rouge NP
BFB_Col_FK_12681	FBCOO996-13	curtipennis	658	BOLD:AAZ0388		Germany: Saxony
BIOUG26579-E04	POBGD121-15	curtipennis	577	BOLD:AAZ0388		Quebec: Montreal
BIOUG26579-E05	POBGD122-15	curtipennis	604	BOLD:AAZ0388		Quebec: Montreal
ZFMK-TIS-2510049	GCOL7444-16	curtipennis	658	BOLD:AAZ0388		Germany: Thuringia
BIOUG24151-G08	RRSSC6593-15	curtipennis	658	BOLD:AAZ0388		Ontario: Toronto
	GBCOU8183-14	curtipennis	634			Germany: North Rhine
BIOUG26579-E06	POBGD123-15	curtipennis	613	BOLD:AAZ0388		Quebec: Montreal
CNCAJB19-133	QUEDC033-19	curtipennis	658	BOLD:AAZ0388	novel	Portugal: Madeira
11239-H08	GENHP124-11	curtipennis	658	BOLD:AAZ0388		France: Normandy
ZMUO. 002352	COLFC167-12	curtipennis	658	BOLD:AAZ0388		Finland: Aland Islands
BIOUG31142-B04	SMTPR9693-16	curtipennis	632	BOLD:AAZ0388		British Columbia: Cranbrook
ZMUO. 000544	COLFA504-12	fuliginosus	308**			Finland: Oulo
BIOUG13329-B05	SSBRB5288-14	fuliginosus	353	BOLD:ACB0188		Nova Scotia: Cape Breton
BOLD-0DBQRGZN4	MOBIL1557-16	fuliginosus	615	BOLD:ACB0188		Nova Scotia: Halifax
	GBMIX1219-15	fuliginosus	621			Germany: Bavaria
	COLFH421-15	fuliginosus	636			Finland: ?
ZMUO. 003949	COLFD054-12	fuliginosus	634	BOLD:ACB0188		Finland: Karelia
ZMUO. 006785	COLFE990-13	fuliginosus	658	BOLD:ACB0188		Finland: Lapland
	GBCOU7368-14	fuliginosus	658			Germany: North Rhine
ZFMK-TIS-2522255	GCOL9778-16	fuliginosus	658	BOLD:ACB0188		Germany: Saxony
ZFMK-TIS-2501187	GCOL5175-16	fuliginosus	658	BOLD:ACB0188		Germany: Thuringia
	GBCOU8272-14	fuliginosus	658			Germany: North Rhine
	GBCOU7339-14	fuliginosus	658			Germany: North Rhine
ZFMK-TIS-2515386	GCOL8475-16	fuliginosus	658	BOLD:ACB0188		Germany: North Rhine
BFB_ZSM_COLA_1636	FBCOJ591-12	fuliginosus	658	BOLD:ACB0188		Germany: Bavaria
ZFMK-TIS-2504002	GCOL5541-16	fuliginosus	658	BOLD:ACB0188		Germany: Thuringia
ZMUO. 006686	COLFF891-13	fuliginosus	658	BOLD:ACB0188		Finland: Aland Islands
GBOL 2211	GBCOU402-13	fuliginosus	658	BOLD:ACB0188		Germany: ?
ZFMK-TIS-2515251	GCOL8414-16	fuliginosus	658	BOLD:ACB0188		Germany: North Rhine
ZFMK-TIS-2521995	GCOL9688-16	fuliginosus	658	BOLD:ACB0188		Germany: Hesse
	CNCCJ3096-14	horni	658			British Columbia: ?

Table 1. Continued.

Specimen ID	Process ID	Species	bp	BIN	Novel	Locality
CNCAJB19-82	QUEDB082-19	horni	658	BOLD:ACM0300	novel	Alaska: Auke Bay
CNCAJB19-152	QUEDC052-19	horni	658	BOLD:ACM0300	novel	Washington: Olympic NP
BIOUG13331-C02	SSBRA3301-14	labradorensis	568	BOLD:ACA7261		Nova Scotia: Cape Breton
	COLNF2039-15	labradorensis	622			Alberta: ?
BIOUG25126-A06	SSBCA5927-15	labradorensis	592	BOLD:ACA7261		British Columbia: Burnt Cabin
BIOUG25126-A07	SSBCA5928-15	labradorensis	592	BOLD:ACA7261		British Columbia: Burnt Cabin
BIOUG25126-B05	SSBCA5938-15	labradorensis	592	BOLD:ACA7261		British Columbia: Burnt Cabin
BIOUG25126-B04	SSBCA5937-15	labradorensis	592	BOLD:ACA7261		British Columbia: Burnt Cabin
BIOUG05929-H07	SSEIB12884-13	labradorensis	585	BOLD:ACA7261		Alberta: Elk Island NP
BIOUG09049-H02	SSPAC11229-13	labradorensis	576	BOLD:ACA7261		Saskatchewan: Prince Albert NP
	COLNF2036-15	labradorensis	658			Alberta: ?
BIOUG09049-H01	SSPAC11228-13	labradorensis	576	BOLD:ACA7261		Saskatchewan: Prince Albert NP
BIOUG05929-H08	SSEIB12885-13	labradorensis	566	BOLD:ACA7261		Alberta: Elk Island NP
BIOUG09049-G12	SSPAC11227-13	labradorensis	508	BOLD:ACA7261		Saskatchewan: Prince Albert NP
	CNCCH935-12	labradorensis	658			Quebec: ?
	CNCCH937-12	labradorensis	658			Quebec: ?
BIOUG05859-B02	SSPAA9896-13	labradorensis	572	BOLD:ACA7261		Saskatchewan: Prince Albert NP
BIOUG05859-B03	SSPAA9897-13	labradorensis	584	BOLD:ACA7261		Saskatchewan: Prince Albert NP
	CNCCJ3092-14	labradorensis	658			Alaska: ?
BIOUG05859-B12	SSPAA9906-13	labradorensis	593	BOLD:ACA7261		Saskatchewan: Prince Albert NP
BIOUG05859-B07	SSPAA9901-13	labradorensis	593	BOLD:ACA7261		Saskatchewan: Prince Albert NP
	CNCCJ3094-14	labradorensis	658			Northwest Territory: ?
	CNCCJ3091-14	labradorensis	658			Ontario: ?
CNCAJB18-140	QUEDA135-18	labradorensis	658	BOLD:ACA7261	novel	Alaska: Delta Junction
	CNCCH934-12	labradorensis	658			Ontario: ?
	CNCCJ3100-14	lanei	658			Nevada: Lake Tahoe
CNCAJB19-154	QUEDC054-19	lanei	408	BOLD:ACM0054	novel	Oregon: Strawberry Lake
CNCAJB19-151	QUEDC051-19	lanei	408	BOLD:ACM0054	novel	California: Lassen NP
CNCAJB19-153	QUEDC053-19	lanei	408	BOLD:ACM0054	novel	Oregon: Gearhart Mt.
CNCAJB19-89	QUEDB089-19	laticollis	658	BOLD:AAN6181	novel	Tennessee: Lake Co.
CNCAJB19-86	QUEDB086-19	laticollis	407		novel	Arkansas: Logan Co.
TDWG-0662	TDWGB526-10	laticollis	655*	BOLD:ABA6318		Massachusetts: Woods Hole
CNCAJB19-90	QUEDB090-19	laticollis	407		novel	Kentuckey: Trigg Co.
TDWG-0183	TDWGB068-10	laticollis	658	BOLD:AAN6181		Massachusetts: Woods Hole
TDWG-0661	TDWGB525-10	laticollis	658	BOLD:AAN6181		Massachusetts: Woods Hole
TDWG-0659	TDWGB523-10	laticollis	658	BOLD:AAN6181		Massachusetts: Woods Hole
BIOUG35454-E02	ELPCH702-17	laticollis	658	BOLD:AAN6181		Ontario: South Frontenac
	CNCCJ3090-14	laticollis	658			Mississippi: ?
TDWG-0660	TDWGB524-10	laticollis	658	BOLD:AAN6181		Massachusetts: Woods Hole
TDWG-0184	TDWGB069-10	laticollis	658	BOLD:AAN6181		Massachusetts: Woods Hole
BIOUG34966-A07	ELPCG6266-17	laticollis	593	BOLD:AAN6181		Ontario: South Frontenac
BIOUG35440-C04	ELPCH144-17	laticollis	658	BOLD:AAN6181		Ontario: South Frontenac
BIOUG35454-E03	ELPCH703-17	laticollis	658	BOLD:AAN6181		Ontario: South Frontenac
CNCAJB19-87	QUEDB087-19	laticollis	658	BOLD:AAN6181	novel	Arkansas: Newton Co.
BIOUG35450-B07	ELPCG11068-17	laticollis	658	BOLD:AAN6181		Ontario: South Frontenac
BIOUG35453-H11	ELPCH652-17	laticollis	658	BOLD:AAN6181		Ontario: South Frontenac
BIOUG35459-A02	ELPCH813-17	laticollis	658	BOLD:AAN6181		Ontario: South Frontenac
BIOUG35453-A06	ELPCH478-17	laticollis	658	BOLD:AAN6181		Ontario: South Frontenac
BIOUG34219-H05	OPPZI012-17	laticollis	658	BOLD:AAN6181		Ontario: Lions Head
CNCAJB19-116	QUEDC016-19	levicollis	658	BOLD:ACB9476	novel	Greece: Karpathos
CNCAJB19-117	QUEDC017-19	levicollis	658	BOLD:ACB9476	novel	Syria: Mashta al Hilu

Table 1. Continued.

Specimen ID	Process ID	Species	bp	BIN	Novel	Locality
CNCAJB19-118	QUEDC018-19	levicollis	658	BOLD:ACB9476	novel	Iran: Sepidor
CNCAJB19-119	QUEDC019-19	levicollis	658	BOLD:ACB9476	novel	Spain: Extremadura
	GBCOU7999-14	levicollis	658			Germany: North Rhine
	GBEPT963-14	levicollis	658			Hungary: ?
CNCAJB19-115	QUEDC015-19	levicollis	658	BOLD:ACB9476	novel	Morocco: Bad Bessen
BFB_Col_FK_8906	FBCOG1021-12	levicollis	658	BOLD:ACB9476		Germany: North Rhine
ZMUO. 005817	COLFF212-13	levicollis	658	BOLD:ACB9476		Sweden: Öland
	GBCOU8000-14	levicollis	658			Germany: North Rhine
CNCAJB19-122	QUEDC022-19	meridiocarpathicus	658	BOLD:AAZ0388	novel	Greece: Peloponnese
CNCAJB19-121	QUEDC021-19	meridiocarpathicus	658	BOLD:AAZ0388	novel	Italy: Bibione
CNCAJB19-123	QUEDC023-19	meridiocarpathicus	658	BOLD:AAZ0388	novel	Russia: Krasnodar Krai
BIOUG09622-G02	SSJAF8757-13	molochinoides	387			Alberta: Jasper NP
BIOUG09622-E06	SSJAF8737-13	molochinoides	513			Alberta: Jasper NP
CNCAJB19-80	QUEDB080-19	molochinoides	658	BOLD:ACU4505	novel	New Hampshire: Mt. Washington
CNCAJB18-142	QUEDA137-18	molochinoides	658	BOLD:ACU4505	novel	Alaska: Becharof Peninsula
UAM:Ento:29521	UAMIC400-13	molochinoides	558	BOLD:ACU4505		Alaska: Becharof Peninsula
	COLNF2042-15	molochinoides	442			Alberta: ?
BIOUG09622-H04	SSJAF8771-13	molochinoides	523			Alberta: Jasper NP
CNCAJB19-78	QUEDB078-19	molochinoides	658	BOLD:AAQ0037	novel	Washington: Stevens Co.
CNCAJB19-73	QUEDB073-19	molochinoides	658	BOLD:AAQ0037	novel	British Columbia: Prince George
BIOUG24582-B02	SSKNA9647-15	molochinoides	592	BOLD:AAQ0037		British Columbia: Kinasken Lake
CNCAJB18-135	QUEDA130-18	molochinoides	658	BOLD:AAQ0037	novel	Alaska: South Chilkat
BIOUG09884-E05	INRMA1650-14	molochinoides	407			British Columbia: St. Elias
BIOUG24582-B05	SSKNA9650-15	molochinoides	592	BOLD:AAQ0037		British Columbia: Kinasken Lake
BIOUG24584-A04	SSKNA9782-15	molochinoides	592	BOLD:AAQ0037		British Columbia: Kinasken Lake
BIOUG24584-A08	SSKNA9786-15	molochinoides	583	BOLD:AAQ0037		British Columbia: Kinasken Lake
UAM:Ento:259211	UAMIC2876-15	molochinoides	658	BOLD:AAQ0037		Alaska: Chichagof Island
10PCCOL-1009	BBCCM104-10	molochinoides	658	BOLD:AAQ0037		British Colombia: Mt. Revelstoke
CNCAJB18-133	QUEDA128-18	molochinoides	658	BOLD:AAQ0037	novel	Alaska: Hawthorne Peak
CNCAJB18-134	QUEDA129-18	molochinoides	658	BOLD:AAQ0037	novel	Alaska: Boulder Creek
CNCAJB18-136	QUEDA131-18	molochinoides	658	BOLD:AAQ0037	novel	Alaska: Haines
CNCAJB18-137	QUEDA132-18	molochinoides	658	BOLD:AAQ0037	novel	Alaska: Hawthorne Peak
10PCCOL-1008	BBCCM103-10	molochinoides	658	BOLD:AAQ0037		British Colombia: Glacier NP
CNCAJB18-138	QUEDA133-18	molochinoides	658	BOLD:AAQ0037	novel	Alaska: Chichagof Island
CNCAJB18-139	QUEDA134-18	molochinoides	658	BOLD:AAQ0037	novel	Alaska: Chichagof Island
BIOUG24583-H04	SSKNA9771-15	molochinoides	511	BOLD:AAQ0037		British Columbia: Kinasken Lake
BIOUG04808-E01	SSWLA2101-13	molochinoides	591	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04808-D08	SSWLA2096-13	molochinoides	616	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04808-E05	SSWLA2105-13	molochinoides	615	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04808-C11	SSWLA2087-13	molochinoides	636	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04808-E12	SSWLA2112-13	molochinoides	634	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04808-F03	SSWLA2115-13	molochinoides	616	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04122-H04	SSBAB2954-12	molochinoides	638	BOLD:ACU4504		Alberta: Banff NP
BIOUG04808-B11	SSWLA2075-13	molochinoides	634	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04122-H06	SSBAB2956-12	molochinoides	615	BOLD:ACU4504		Alberta: Banff NP
BIOUG04122-H05	SSBAB2955-12	molochinoides	615	BOLD:ACU4504		Alberta: Banff NP
BIOUG05929-A09	SSWLC3723-13	molochinoides	487	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04122-H07	SSBAB2957-12	molochinoides	615	BOLD:ACU4504		Alberta: Banff NP
BIOUG06159-A08	SSBAE3713-13	molochinoides	634	BOLD:ACU4504		Alberta: Banff NP
BIOUG04808-D09	SSWLA2097-13	molochinoides	629	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04808-D03	SSWLA2091-13	molochinoides	633	BOLD:ACU4504		Alberta: Waterton NP

Table 1. Continued.

Specimen ID	Process ID	Species	bp	BIN	Novel	Locality
BIOUG04808-D01	SSWLA2089-13	molochinoides	634	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04808-C08	SSWLA2084-13	molochinoides	615	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04808-E09	SSWLA2109-13	molochinoides	554	BOLD:ACU4504		Alberta: Waterton NP
BIOUG05929-A08	SSWLC3722-13	molochinoides	553	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04808-E06	SSWLA2106-13	molochinoides	611	BOLD:ACU4504		Alberta: Waterton NP
BIOUG05929-C02	SSWLD3828-13	molochinoides	565	BOLD:ACU4504		Alberta: Waterton NP
BIOUG04808-E08	SSWLA2108-13	molochinoides	607	BOLD:ACU4504		Alberta: Waterton NP
CNCAJB18-131	QUEDA126-18	molochinus	610	BOLD:ACK9517	novel	Quebec: Portneuf Co.
CNCAJB19-160	QUEDC060-19	molochinus	658	BOLD:ACK9517	novel	Czech Rep.: Podyji NP
ZFMK-TIS-2500523	GCOL4820-16	molochinus	658	BOLD:ACK9517		Germany: Thuringia
ZFMK-TIS-2500536	GCOL4832-16	molochinus	658	BOLD:ACK9517		Germany: Thuringia
ZFMK-TIS-2527486	GCOL11134-16	molochinus	658	BOLD:ACK9517		Germany: Thuringia
CNCAJB18-132	QUEDA127-18	molochinus	658	BOLD:ACK9517	novel	Quebec: Montmorency
ZFMK-TIS-2527509	GCOL11135-16	molochinus	658	BOLD:ACK9517		Germany: Thuringia
ZFMK-TIS-2512535	GCOL8160-16	molochinus	658	BOLD:ACK9517		Germany: North Rhine
ZFMK-TIS-2512534	GCOL8159-16	molochinus	658	BOLD:ACK9517		Germany: North Rhine
CNCAJB19-137	QUEDC037-19	molochinus	658	BOLD:ACK9517	novel	Czech Rep.: Karlov
ZMUO. 005990	COLFF290-13	molochinus	658	BOLD:ACK9517		Finland: Lapland
ZMUO. 006695	COLFF900-13	molochinus	658	BOLD:ACK9517		Finland: Aland Islands
CNCAJB19-113	QUEDC013-19	molochinus	408	BOLD:ACK9517	novel	Russia: Transbaikal
CNCAJB19-130	QUEDC030-19	pallipes	658	BOLD:ACR8319	novel	Italy: Calabria
CNCAJB19-129	QUEDC029-19	pallipes	658	BOLD:ACR8319	novel	Italy: Sardinia
CNCAJB19-131	QUEDC031-19	pallipes	408	BOLD:ACR8319	novel	Morocco: Tetouan
JX626110	GBCL64391-19	simplicifrons	454			Portugal: Azores
JX626109	GBCL64390-19	simplicifrons	454			Portugal: Azores
CNCAJB19-126	QUEDC026-19	simplicifrons	408	BOLD:ACR8319	novel	Spain: Tenerife
	GBCOU8670-14	simplicifrons	658			France: Brittany
CNCAJB19-127	QUEDC027-19	simplicifrons	658	BOLD:ACR8319	novel	Spain: Extremadura
CNCAJB19-124	QUEDC024-19	simplicifrons	658	BOLD:ACR8319	novel	Portugal: Madeira
CNCAJB19-125	QUEDC025-19	simplicifrons	658	BOLD:ACR8319	novel	Spain: Andalusia
ZMUO. 005986	COLFF286-13	subunicolor	407	BOLD:AEC1928		Finland: Lapland
CNCAJB19-139	QUEDC039-19	sundukovi	408		novel	Russia: Khabarovsk
CNCAJB19-140	QUEDC040-19	sundukovi	408		novel	Russia: Sakhalin Island
CNCAJB19-144	QUEDC044-19	sundukovi	658	BOLD:AEC6428	novel	Russia: Khabarovsk
CNCAJB19-147	QUEDC047-19	sundukovi	658	BOLD:AEC6428	novel	Kazakhstan: Altai
CNCAJB19-138	QUEDC038-19	sundukovi	658	BOLD:AEC3770	novel	Russia: Khabarovsk
CNCAJB19-142	QUEDC042-19	sundukovi	658	BOLD:AEC6429	novel	Russia: Khabarovsk
CNCAJB19-143	QUEDC043-19	sundukovi	658	BOLD:AEC6429	novel	Russia: Khabarovsk
CNCAJB19-145	QUEDC045-19	sundukovi	658	BOLD:AEC5328	novel	Russia: Transbaikal
CNCAJB19-146	QUEDC046-19	sundukovi	658	BOLD:AEC5328	novel	Russia: Transbaikal
CNCAJB19-111	QUEDC011-19	unicolor	408		novel	Slovakia: High Tatras
CNCAJB19-109	QUEDC009-19	unicolor	408		novel	Spain: Picos de Europa
BC ZSM COL 2394	FBCOD1064-11	unicolor	658	BOLD:ABU5684		Austria: Carinthia
CNCAJB19-112	QUEDC012-19	unicolor	658	BOLD:ABU5684	novel	Italy: Trento
CNCAJB19-105	QUEDC005-19	vicinus	658	BOLD:AEC2086	novel	Georgia: Kumisi
CNCAJB19-107	QUEDC007-19	vicinus	658	BOLD:AEC2086	novel	Turkey: Antalya
CNCAJB19-106	QUEDC006-19	vicinus	658	BOLD:AEC1709	novel	Israel: Lower Galilee
CNCAJB19-108	QUEDC008-19	vicinus	658	BOLD:AEC1709	novel	Jordan: Amman

A subset of the alignment containing the specimens of the morphologically very similar Quedius species from the molochinoides-group (Q. altanai, Q. horni, Q. lanei and Q. molochinoides) was subjected to a haplotype network analysis in POPART (Leigh \& Bryant 2015), where all sequences with more than 5% of missing data (i.e. sequences with less than 625 bp) were excluded. A Median Joining Network analysis (Bandelt et. al 1999), was performed using default settings. The obtained network was subsequently colored using the species clusters gathered from morphological and genetic analysis.
Species and species group concepts. Species delimitation is a core problem in taxonomy. This is a particular challenge in Quedius where morphological characters, including those that are traditionally used for species diagnosis, both vary and are often not easily measurable (e.g., Salnitska \& Solodovnikov 2018a,b; Hu et al. 2020). As an alternative, a measurable divergence in the genetic barcode (COI) is sometimes used as an alternative proxy for species delimitation. Although a greater than 2% divergence in COI is often considered to correspond to distinct species, there are always higher divergence values and other exceptions as well (Lukhtanov 2019), e.g. much higher values (up to 15%) were found within single species in a large barcode study of German Coleoptera (Hendrich et al. 2015). Whether these correspond to cryptic species or large variation is still unknown, but presumably it is a mix, with some species maintaining large intraspecific variation. Various approaches have been proposed to account for these factors, for example, BOLD is using BINs which considers multiple factors including quality control of input data, a 2.2% difference between sequences, and a validation of all OTUs within 4.4% of each other (Ratnasingham \& Hebert 2013). Nevertheless, the usage of COI barcodes for species delimitation has been critizised as a stand-alone tool, and it has been suggested that COI barcodes should be used in combination with other characters (e.g. Will \& Rubinoff 2004, Cognaton 2006, Dupuis et al. 2012, Kondandaramaiah et al. 2013, Simonsen et al. 2019, Tokareva et al. 2021, Salnitska \& Solodovnikov 2021). Because of the ambiguities associated with species delimitation based on genetic data alone, and the practical utility of the morphologically distinct species at this state of knowledge of Quedius s. str., we refrain from using such genetic differences alone to assign species status to molecular clusters. At the current stage of knowledge of Quedius s. str. it is important to deal with the taxonomic species which can be distinguished based on morphology alone. Within this framework, we therefore use BINs and OTUs to define genetic clusters that help to evaluate morphological variation and detect morphological characters that show hiatus between these clusters. Only such morphologically diagnosable clusters are given species status; molecular clusters not supported by morphological characters are worth exploring in the future.

For defining species groups, we use monophyletic lineages from our genomic phylogeny of Quedius sensu stricto (Fig. 1; A. HANSEN et al., in prep.) where Quedius
s. str. was sampled rather densely and well represented. The only exception to this is that Q. unicolor and Q. vicinus were added to the Q. molochinus species group, although they appear as monotypic lineages. This is done for practical reasons as these species are externally very similar to species of the Q. molochinus-group and would otherwise only be separable through dissection of males.

Results

Species delimitation: OTUs, BINs and clustering. The COI barcode dataset comprised sequences from a total of 200 specimens (Table 1), of which four were excluded due to insufficient data quality, and one outgroup sequence was included. Among these, 66 are new sequences generated here from both pinned and alcohol preserved specimens. 47 new sequences were full (658 bp) and 19 were partial sequences ($407-610 \mathrm{bp}$). The oldest specimen from which we successfully sequenced a full DNA barcode was collected in 1975; the oldest from which we successfully sequenced a partial DNA barcode was collected in 1973. Nearly all currently recognized species were represented in the dataset by at least one specimen. For Q. altanai sp. nov., only a partial sequence (408 bp) was generated. We were unable to get sequence data for Q. strenuus, which was represented by old specimens only. Most of the hitherto recognized taxonomic species were supported as monophyletic in both the BI and ML analyses (Figs 3, 4). The exceptions were the Q. subunicolor $\times Q$. altaicus and Q. hispanicus $\times Q$. pallipes species pairs. A supported cluster was recovered with unsupported internal relationships between a Q. subunicolor specimen from Lapland, Finland, and specimens of Q. altaicus: one from Transbaikalia and two from Altai, Russia. Another supported cluster was recovered with unsupported internal relationships between specimens morphologically clearly belonging to Q. hispanicus from mainland Spain, Tenerife, Azores, Madeira and France, and specimens belonging to Q. pallipes from Morocco and Italy. Most of the currently accepted species were identical to a single OTU or BIN, with the exceptions of Q. vicinus (2 OTUs, 2 BINs), Q. molochinoides (3 OTUs, 3 BINs), Q. unicolor (3 OTUs, 1 BIN) and Q. sundukovi (5 OTUs, 4 BINs) (Table 2). Taxonomic species clusters had an intraspecific distance variation ranging from 0.1% to 3.7% (average 1.1%) and an interspecific distance to nearest neighbor of $4.7 \%-11.0 \%$ (8.0%), disregarding a single partial sequence of Q. altanai from Red Mt. Pass, Colorado with an interspecific distance of 1.2%.

Phylogenetic and haplotype network analyses. A single partition under the TVM $+\mathrm{I}+\mathrm{G}$ model was selected by PartitionFinder2. The BI analysis was run for 30 million generations, with 10% burn-in (3 million generations), whereafter it had reached convergence. All PSRF values were nearing 1.000 and most analysis parameters had effective sampling size (ESS) above 2000. All taxonomic species sampled (Table 1) were recovered in both the BI and ML analyses, which produced nearly the same results

Q. molochinus-group
 Q. laticollis-group

 Q. molochinoides-groupFigure 4

Fig. 3. Phylogeny of Quedius s. str. based on Bayesian Inference (BI) and Maximum Likelihood (ML) analyses of COI barcodes (part 1). BI posterior probabilities (PP), ML ultrafast bootstrap support (UFB) and ML SH-aLRT test are shown. Nodes coloured as: green, $\mathrm{PP} \geq 0.90$, and either UFB ≥ 95 or SH-aLRT ≥ 80; yellow, one of $\mathrm{PP} \geq 0.90$, UFB ≥ 95 or $\mathrm{SH}-\mathrm{aLRT} \geq 80$; red, $\mathrm{PP}<0.90$, UFB <95 and $\mathrm{SH}-\mathrm{aLRT}<80$.

Fig. 4. Phylogeny of Quedius s. str. species based on Bayesian Inference (BI) and Maximum Likelihood (ML) COI barcodes (part 2). BI posterior probabilities (PP), ML ultrafast bootstrap support (UFB) and ML SH-aLRT test are shown. Nodes coloured as: green, PP ≥ 0.90, and either UFB ≥ 95 or $\mathrm{SH}-\mathrm{aLRT} \geq 80$; yellow, one of $\mathrm{PP} \geq 0.90$, UFB ≥ 95 or $\mathrm{SH}-\mathrm{aLRT} \geq 80$; red, $\mathrm{PP}<0.90$, UFB <95 and $\mathrm{SH}-\mathrm{aLRT}<80$.

Table 2. Genetic distance between clusters of CO 1 barcodes. $\mathrm{n}=$ number of specimens barcoded. Number of OTUs found by species delimiter plugin in Geneious. Intraspecific distance within cluster. Interspecific distance is distance to nearest other cluster.

Species	n	No. of OTU	Average IntraD	Closest InterD	BIN(s)
levicollis	10	1	1.5\%	9.0\%	BOLD:ACB9476
fuliginosus	18	1	0.2\%	4.9\%	BOLD:ACB0188
afrofuliginosus	1	1	na	4.9\%	BOLD:AEC2087
curtipennis	21	1	0.4\%	6.6\%	BOLD:AAZ0388
pallipes / simplicifrons	10	1	0.5\%	11.0\%	BOLD:ACR8319
labradorensis	23	1	0.8\%	9.8\%	BOLD:ACA7261
unicolor	4	3	3.2\%	9.8\%	BOLD:ABU5684
horni	3	1	2.0\%	9.8\%	BOLD:ACM0300
vicinus	4	2	2.1\%	9.8\%	BOLD:AEC2086, BOLD:AEC1709
altanai	1	1	na	1.2\%	
lanei	4	1	0.1\%	9.8\%	BOLD:ACM0054
molochinoides	47	3	1.6\%	9.8\%	$\begin{aligned} & \text { BOLD:ACU4504, } \\ & \text { BOLD:AAQ0037, } \\ & \text { BOLD:ACU4505 } \end{aligned}$
molochinoides 1	22	1	0.6\%	2.3\%	BOLD:ACU4504
molochinoides 2	18	1	0.3\%	2.3\%	BOLD:AAQ0037
molochinoides 3	7	1	0.3\%	1.2\%	BOLD:ACU4505
laticollis	19	1	0.7\%	9.8\%	BOLD:AAN6181
sundukovi	9	5	3.7\%	9.8\%	BOLD:AEC5328, BOLD:AEC6429, BOLD:AEC3770, BOLD:AEC6428
meridiocarpathicus	3	1	0.3\%	4.7\%	BOLD:AAZ0388
balticus	1	1	na	4.7\%	BOLD:ABW4895
altaicus /subunicolor	4	1	0.6\%	5.5\%	BOLD:AEC1928
molochinus	13	1	0.7\%	5.5\%	BOLD:ACK9517
average			1.1\%	8.0\%	
minimum			0.1\%	4.7\%	
maximum			3.7\%	11.0\%	

(Figs 3,4) and differed only in a less resolved tree for ML within the laticollis-, molochinus- and molochinoi-des-groups. Three well supported clades were recovered by both analyses (support values are given in Table 3). The first clade is the Q. fuliginosus-group (comprising Q. afrofuliginosus, Q. fuliginosus, Q. curtipennis and Q. levicollis) recovered with high support ($\mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}$ $=97.2, \mathrm{UFB}=98$) as sister to a well supported clade comprising the remaining members of Quedius sensu stricto $(\mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}=94.7, \mathrm{UFB}=90)$. The latter clade is divided into two well supported clades the Q. pallipes-group (comprising Q. hispanicus and Q. pallipes) was well supported ($\mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}=99.1, \mathrm{UFB}$ $=100$), and a clade comprising the remaining species groups (Q. laticollis-group, Q. molochinus-group and Q. molochinoides-group), which is also well supported ($\mathrm{PP}=$ $1, \mathrm{SH}-\mathrm{aLRT}=97.6, \mathrm{UFB}=96$). There was no support for the remaining species group, except Q. laticollis-group (only Q. laticollis in this study), which was recovered within members of the Q. molochinoides-group.

In the Q. fuliginosus-group, Q. levicollis was strongly supported $(\mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}=99.6, \mathrm{UFB}=100)$ and
recovered as sister to the other members of the group, which were supported by the BI analysis, but not in the ML analysis $(\mathrm{PP}=0.95, \mathrm{SH}-\mathrm{aLRT}=77.4, \mathrm{UFB}=72)$. The single Q. afrofuliginosus sequence was recovered together with Q. fuliginosus with low support ($\mathrm{PP}=0.69$, $\mathrm{SH}-\mathrm{aLRT}=31.5, \mathrm{UFB}=52$). Quedius fuliginosus and Q. curtipennis each formed well supported clades ($\mathrm{PP}=1$, $\mathrm{SH}-\mathrm{aLRT}=99.8, \mathrm{UFB}=100 ; \mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}=97.8$, $\mathrm{UFB}=98$, respectively).

In the Q. pallipes-group specimens morphologically belonging to Q. hispanicus and Q. pallipes were intermixed in a highly supported clade ($\mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}=99.1$, $\mathrm{UFB}=100)$ without clear resolution within the clade.

The remaining species groups formed a well supported clade, but with unresolved internal relationships. The BI analysis supported five clades, each without internal resolution. Three of these clades each comprising only a single species $-Q$. vicinus, Q. unicolor and Q. horni, respectively - were all well supported (all $\mathrm{PP}=1$). Two clades: a Nearctic clade comprising Q. labradorensis, Q. molochinoides, Q. lanei, Q. altanai and Q. laticollis; and a Palearctic clade comprising Q. sundukovi, Q. subunicolor, Q. molochinus, Q. balticus and Q. meridiocarpathicus -both weakly supported ($\mathrm{PP}=0.70$; and $\mathrm{PP}=0.88$, respectively). The ML analysis recovered a well supported clade comprising the species Q. horni $(\mathrm{SH}-\mathrm{aLRT}=99.7$, $\mathrm{UFB}=100)$ as sister to the remaining two clades. These two clades were: a Nearctic clade comprising Q. labradorensis, Q. molochinoides, Q. lanei, Q. altanai and Q. laticollis; and a Palearctic clade comprising Q. vicinus, Q. unicolor, Q. sundukovi, Q. subunicolor, Q. molochinus, Q. balticus and Q. meridiocarpathicus - both weakly supported $(\mathrm{SH}-\mathrm{aLRT}=78.8, \mathrm{UFB}=56 ; \mathrm{SH}-\mathrm{aLRT}=83.5$, UFB $=37$, respectively).

The ML analysis recovered three clades within the Palearctic lineage without fully resolved relationships. Among them, Q. vicinus and Q. unicolor are well supported as monophyletic species clades ($\mathrm{SH}-\mathrm{aLRT}=100$, UFB = 96; and $\mathrm{SH}-\mathrm{aLRT}=99.9$, UFB $=100$, respectively), while the remaining species grouped together in a weakly supported clade $(\mathrm{SH}-\mathrm{aLRT}=81.1, \mathrm{UFB}=56)$ similar to the results of the BI analysis. The internal relationships within this clade were supported in the BI analysis, but not in the ML analysis where Q. sundukovi is sister to a grade of the remaining molochinus-group species (P $=0.88, \mathrm{SH}-\mathrm{aLRT}=81.1, \mathrm{UFB}=56)$, Q. balticus $(\mathrm{P}=$ $0.99, \mathrm{SH}-\mathrm{aLRT}=87.6, \mathrm{UFB}=90)$, Q. meridiocarpathicus $(\mathrm{P}=0.98, \mathrm{SH}-\mathrm{aLRT}=85.4, \mathrm{UFB}=81)$, and then Q. subunicolor sister to Q. molochinus $(\mathrm{P}=0.98$, SH-aLRT $=83.8$, UFB $=85$).

All the taxonomic species in the Palearctic clade Q. sundukovi, Q. subunicolor, Q. meridiocarpathicus and Q. molochinus - were monophyletic and highly supported in both analyses $(\mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}=96, \mathrm{UFB}=99$; PP $=1, \mathrm{SH}-\mathrm{aLRT}=99.2, \mathrm{UFB}=100 ; \mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}=$ $99.4, \mathrm{UFB}=100 ; \mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}=98.8, \mathrm{UFB}=100$, respectively). The taxonomic cluster of Q. subunicolor contained specimens from Scandinavia, Altai, and the Transbaikalia region of Russia. Specimens from Sca-

Table 3. Clade support values of the COI species tree, only values of PP ≥ 0.90, SH-aLRT ≥ 80, and UFB ≥ 95 indicated.

Species groups and species	PP	SH- aLRT	UFB	Sup- port
Q. fuliginosus-group	1	97.2	98	High
Q. levicollis	1	100	100	High
Q. fuliginosus, Q. curtipennis	0.95	77.4	72	Low
and Q. afrofuliginosus				

ndinavia and Altai were previously recognized as two separate species $-Q$. subunicolor and Q. altaicus.

Within the weakly supported Nearctic clade ($\mathrm{PP}=0.70$, $\mathrm{SH}-\mathrm{aLRT}=78.8, \mathrm{UFB}=56$) two subclades were recovered. One with high support comprising Q. molochinoides and Q. altanai $(\mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}=99.4, \mathrm{UFB}=100)$, and one with weak support comprising Q. lanei as sister to Q. labradorensis and Q. laticollis $(\mathrm{PP}=0.93, \mathrm{SH}-\mathrm{aLRT}$ $=81.2, \mathrm{UFB}=76$). The sister group relationship of Q. labradorensis and Q. laticollis recieved weak support (PP $=0.88, \mathrm{SH}-\mathrm{aLRT}=56.3, \mathrm{UFB}=64$). All the taxonomic species in the Nearctic clade - Q. lanei, Q. laticollis, Q. labradorensis, and Q. molochinoides $(\mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}$ $=100, \mathrm{UFB}=100 ; \mathrm{PP}=0.99, \mathrm{SH}-\mathrm{aLRT}=90, \mathrm{UFB}=95$; $\mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}=100, \mathrm{UFB}=100 ; \mathrm{PP}=0.99, \mathrm{SH}-\mathrm{aLRT}$ $=92.5$, UFB $=86$) - were monophyletic and highly supported in both analysis, except for Q. altanai, which was only represented by a single sequence, and thus without support. Q. molochinoides was further clustered in three distinct subgroups each with high support $-Q$. molochi-noides-group 1 , -group 2, and -group 3 ($\mathrm{PP}=1, \mathrm{SH}-\mathrm{aLRT}$ $=95.3, \mathrm{UFB}=99 ; \mathrm{PP}=0.98$, $\mathrm{SH}-\mathrm{aLRT}=86.1, \mathrm{UFB}=$ $92 ; \mathrm{PP}=0.99, \mathrm{SH}-\mathrm{aLRT}=91.5, \mathrm{UFB}=86$, respectively).

The haplotype network analysis of the morphologically rather uniform Q. molochinoides-group (Q. molochinoides, Q. lanei, Q. horni and Q. altanai) showed clear gaps between the known taxonomic species (Fig. 5). After filtering, the network was represented by a total of 44 sequences most belonging to Q. molochinoides, only three of Q. horni and one of Q. lanei. The current taxonomic species were separated as follows: 28 SNPs between Q. molochinoides and the single sequence of Q. lanei and 22 SNPs between Q. molochinoides and Q. horni. The three subgroups of Q. molochinoides found in both the BI and ML analyses were recovered in the network analysis with four distinct SNPs between each subgroup. Within each of these subgroups most sequences were separated by a single SNP, except for a few sequences, which were separated by two or three SNPs.

Species groups. The species groups outlined in this paper are based on a combination of molecular and morphological data combined with biological and geographical considerations. As the COI gene is not very reliable at resolving the phylogenetic backbone species group relationship, we instead rely on data from two upcoming papers (Brunke et al. 2021; A. Hansen et al., in prep.), that use target capture of 1229 orthologous loci to resolve the phylogeny of Quediini. The topology relevant for Quedius s. str. is presented in Fig. 1 and is used as a genetic backbone to base our decisions on. Based on these data, the fuliginosus-group, pallipes-group, molochinoides-group and laticollis-group are well resolved and have morphological characters easily defining them. On the other hand, the molochinus-group is paraphyletic and was resolved as three distinct groups, namely the monotypic Q. vicinus and Q. unicolor, as well as the rest of the Q. molochinus-group. Here we have instead used morphological and distributional data to group species according to practical purposes, so that the species groups are as easy to distinguish morphologically within each biogeographic region as possible.

Fig. 5. Network analysis of Quedius molochinoides-group: Quedius horni Hatch, 1957 (purple), Q. lanei Hatch, 1957 (green), Q. molochinoides-group 1 (dark blue), Q. molochinoides-group 2 (light blue), and Q. molochinoides-group 3 (teal).

Taxonomy

Genus Quedius Stephens, 1829

Subgenus Quedius Stephens, 1829
Type species. Staphylinus levicollis Brullé, 1832 by subsequent designation in Opinion 1851 (ICZN 1996: 215).
Diagnosis. Generally large and robust species; pronotum with deflexed hypomera; head with large eyes, fully developed infraorbital ridges and entire (not bilobed or apically notched) labrum; tarsi of forelegs rather wide in both sexes; mesoscutellum with two basal carinae; abdomen almost parallel sided, not notably tapering apicad; aedeagus with sharply pointed median lobe, internal sac well developed and often having heavily sclerotized structures, with longitudinal rows of sensory peg setae on paramere apically.

Quedius fuliginosus-group

Diagnosis. Head with 4 or 6 interocular punctures between anterior frontal punctures. Generally largest species within the subgenus with entire body dark; only rarely elytra reddish. Temporal puncture situated at posterior margin of eye. Paramere does not extend over median lobe apex, peg
setae arranged in single rows; median lobe without large teeth on parameral side, at most with small teeth or subapical notch; internal sac without large c-shaped sclerite. Generally widespread species, common in the Palearctic region, found in diverse ground-based debris in both forest and open landscapes. Only Quedius afrofuliginosus is rare, possibly an artefact of both misidentifications and poor sampling in parts of its range.

Quedius afrofuliginosus Gusarov, 1991
 (Figs 1, 3, 6E, 7A, 11A, 18)

Quedius afrofuliginosus Gusarov, 1991: 9 [Type locality: Algeria]
Type material. Holotype: "Algerie, Raffray / [black circle] / c. A. Yakovleva [in Russian] / Holotypus Quedius afrofuliginosus V. Gusarov 1990 [red label] / Zoological Institute St. Petersburg INS_COL_0002505" (ő ZIN). Paratypes: same as holotype, except "Allotypus Quedius afrofuliginosus V. Gusarov 1990 [red label] / Zoological Institute St. Petersburg INS_COL_0002506" (1 \& ZIN); same as holotype, except "Paratypus Quedius afrofuliginosus V. Gusarov 1990 [red label] / Zoological Institute St. Petersburg INS_COL_0002507-000250710" (3 ふた 1 q ZIN). Additional material examined. FRANCE: Corse: Col de Bravella, [41.83, 9.26], 490m, 25.VII.1994, leg. Zerche (1 ơ SDEI). ITALY: SARDINIA: Aritzo, Mte. Gennargentu, [39.94, 9.17], leg. C. Krüger (2 đ̂ō NMW); Ottana, [40.23, 9.04], 11.X.1974 (1 \& cBor); MOROCCO: Ain Leuh, [33.28, -5.33], 17.V.1925, leg. M. Escalera (1 q MNCN). SPAIN:

Fig. 6. Head and pronotal chaetotaxy of Quedius s. str. A- general scheme; B - Q. curtipennis Bernhauer, 1908, C - Q. fuliginosus (Gravenhorst, 1802); D - Q. levicollis Brullé, 1832; E-Q. afrofuliginosus Gusarov, 1991; F - Q. molochinus- and Q. laticollis-groups; G-Q. molochino-ides-group. Abbreviations as follows: anterior frontal puncture (AFP); basal punctures (BP); interocular punctures (IOP); lateral puncture (LP); lateral row (LR); posterior frontal puncture (PFP); parocular punctures (POP); sublateral row (SLR).

Cadiz, Laguna de la Janda, [36.24,-5.84], 30.V.1966, leg. Besuchet (1 ${ }^{\text {T }}$ NMPC).

Redescription. Measurements $\widehat{\text { § }}(\mathrm{n}=6)$: $\mathrm{HW}=1.78$ 1.89 (1.84); HL = 1.54-1.58 (1.56); HL/HW 0.82-0.89 (0.85); $\mathrm{PW}=2.24-2.44$ (2.36); $\mathrm{PL}=2.11-2.22$ (2.16); PL/PW 0.89-0.96 (0.92); EW = 2.33-2.68 (2.59); EL $=2.40-2.51$ (2.47); EL/EW 0.90-1.03 (0.95); EL/PL 1.10-1.19 (1.14); PW/HW 1.44-1.57 (1.51); forebody length 6.10-6.29 (6.19). \circ 早 $(\mathrm{n}=3)$: $\mathrm{HW}=1.84-1.89$ (1.87); $\mathrm{HL}=1.56-1.62$ (1.59); HL/HW 0.84-0.86 (0.85); $\mathrm{PW}=2.38-2.40$ (2.39); $\mathrm{PL}=2.04-2.24$ (2.17); PL/PW $0.86-0.94(0.91) ; \mathrm{EW}=2.69-2.73(2.72) ; \mathrm{EL}=2.36-2.58$ (2.48); EL/EW 0.88-0.94 (0.91); EL/PL 1.06-1.26 (1.15); PW/HW 1.47-1.53 (1.50); forebody length 6.18-6.36 (6.24).

Large species; body black (Fig. 7A).
Head black, distinctly transverse, with microsculpture of head transverse waves, four punctures between anterior frontal punctures, one additional unique puncture on either side posterior of these (Fig. 6E), eyes very large (EyL/TL $=3.17-3.91$ (3.68)) and clearly protruding; antennae and palpi pale reddish, all anntennomeres elongate.

Thorax: pronotum black, slightly wider than long, clearly wider than head, with microsculpture of transverse waves, three punctures in dorsal row, two punctures in sublateral row with posteriormost puncture reaching level of middle puncture of dorsal row; scutellum smooth and glabrous; elytra black, uniformly pubescent, quadrate or slightly wider than long, slightly longer than pronotum; legs dark brown with inner face of tibia darkened and tarsi paler.

Abdomen black, tergites uniformly punctured, slightly iridescent.

Male. Aedeagus (Fig. 11A): paramere broad, rather parallel-sided, reaching apex of median lobe, with sensory peg setae forming two single rows along parameral lateral margins for $2 / 3$ of their length; median lobe on parameral side with clear apical protrusion and two subapical small teeth, the latter positioned near end of peg setae rows of paramere; internal sac with four distal elongate medial sclerites.
Differential diagnosis. Quedius afrofuliginosus can be distinguished from all other Quedius s. str. by the unique head chaetotaxy, with a puncture on either side posterior of the anterior frontal puncture (Fig. 6E). Within the fu-liginosus-group it is additionally distinguished from Q. fuliginosus by the pale antennae, from Q. levicollis by the impunctate and glabrous scutellum, and from Q. curtipennis by wider head ($\mathrm{HW} / \mathrm{HL}=0.74$ vs 0.85) and aedeagal median lobe with apical protrusion.
Bionomics. Nothing is known about the biology of Q. afrofuliginosus. Based on collecting sites it is most likely occurring in forested areas of medium elevation (450 to 1400 m).
Distribution. Quedius afrofuliginosus was originally described from an unknown locality in Algeria. The new material studied in this paper brought to light additional specimens from Tunisia and Morocco in Northern Africa, as well as the first records of this species from the Mediterranean region in southern Spain and on the southern European islands of Corse and Sardinia (Fig. 18).

Quedius curtipennis Bernhauer, 1908

(Figs 1, 3, 6B, 7B, 11C, 12, 18)
Quedius curtipennis Bernhauer, 1908e: 335 [Type locality: Faroe; Romania; Buchara; Böhmen, Wran a. Moldau].
Quedius gracilis Stephens, 1832: 215 [Type locality: London], syn. rev. Quedius parallelus Hatch, 1957: 216 [Type locality: Washington, Seattle]
References. Gridelli (1924): 79 (characters), Scheerpeltz (1933): 1441 (characters), Hansen (1952): 141 (characters); Smetana (1958): 362 (characters and ecology); (1962): 133, (1965b): 38 (characters); (1971a): 129 (characters, synonymy of Q. parallelus); (1965a): 12, (1970): 62, (1990): 98, (1993): 50 (distribution); (1978a): 826 (biology); Korge (1962b): 332 (suspected synonymy of Q. parallelus); (1964): 119 (distribution); Palm (1963): 141 (characters); LOHSE (1964): 211 (characters); DvořÁK (1965): 89 (distribution); HORION (1965): 272 (distribution); Szujecki (1968): 735 (distribution); Frank (1969): 267 (biology); Bordoni (1974b): 10, (1976b): 92 (characters); Pope (1977): 31 (distribution); Coiffait (1978): 191 (characters); Outerelo (1978): 281 (pupal characters); BURAKOWSKI et al. (1980): 134 (distribution); Tóth (1984): 118 (characters); Drugmand (1987): 312 (distribution); Nowosad (1990): 145 (biology); Borges (1990): Table II (distribution); Ciceroni \& Zanetti (1995): 32 (distribution); Owen (1997): 149 (distribution); Outerelo et al. (1998): 129 (biology); Assing (2001): 75

Fig. 7. Habitus of Quedius s. str. A - Q. afrofuliginosus Gusarov, 1991; B - Q. curtipennis Bernhauer, 1908; C - Q. fuliginosus (Gravenhorst, 1802); D-Q. levicollis Brullé, 1832; E-Q. unicolor Kiesenwetter, 1847; F - Q. subunicolor Korge, 1961.

Fig. 8. Habitus of Quedius s. str. A - Q. vicinus (Ménétriés, 1832); B - Q. meridiocarpathicus Smetana, 1958; C - Q. molochinus (Gravenhorst, 1806) (red elytra variant); D - Q. molochinus (black elytra variant); E - Q. balticus Korge, 1960; F - Q. sundukovi Smetana, 2003.

Fig. 9. Habitus of Quedius s. str. A - Q. hispanicus Bernhauer, 1898; B - Q. hispanicus (pale sutures variant); C $-Q$. pallipes Lucas, 1846; D-Q. laticollis (Gravenhorst, 1802) (black elytra variant); E-Q. laticollis (red elytra variant); F - Q. strenuus Casey, 1915.

Fig. 10. Habitus of Quedius s. str. A - Q. horni Hatch, 1957; B - Q. lanei Hatch, 1957; C - Q. altanai Hansen \& Brunke, sp. nov.; D - Q. molochinoides Smetana, 1965 (red elytra variant); E - Q. molochinoides (black elytra variant); F - Q. labradorensis Smetana, 1965.
（biology）；Uhlig et al．（2006）： 54 （distribution）；Tronquet（2006）： 102 （distribution）；Majka \＆Smetana（2007）： 429 （characters and distribu－ tion）；Özgen（2011）： 204 （distribution）；Brunke \＆Marshall（2011）： 59 （characters and distribution）；WebSter et al．（2012）： 313 （distribution）； Magura et al．（2013）： 719 （biology）；Tóthmérész et al．（2014）： 688 （biology）；Semenov et al．（2015）： 127 （distribution）；Semionenkov et al．（2015）： 330 （distribution）；Salnitska \＆Solodovnikov（2018a）： 125 （notes on types and distribution）；（2019）： 48 （distribution）．
Type material examined．Quedius curtipennis：Lectotype：（§，here designated）：＂Suderö Faroer Ins．／Dr．Cornu 1907／v．curtipennis Brh． Typus／fuliginosus Grav．Scheerp．／Chicago NHMus M．Bernhauer Collection／D．Drugmand det． 1994 Quedius（s．str．）curtipennis Brnh． ／Lectotype Quedius curtipennis Bernhauer， 1908 A．K．Hansen \＆A． Solodovnikov des．2021＂（FMNH）．Paralectotypes：＂Nördl．Faroer Ins．／Dr．Cornu 1907 ／v．curtipennis Brh．Typus／fuliginosus Scheerp． ［sic！］det．［illegible］／Chicago NHMus M．Bernhauer Collection／D． Drugmand det． 1994 Quedius（s．str．）curtipennis Brnh／Paralectotype Quedius curtipennis Bernhauer， 1908 A．K．Hansen \＆A．Solodovnikov des．2021＂（1 §MNH）；＂v．curtipennis Buchara Bang Haas det．Bernh． ／Chicago NHMus M．Bernhauer Collection＂（1 § FMNH）．

Quedius parallelus：Holotype：＂Seattle，Wash．U．W．Campus IV－12－ 1949 ／Del． 1954 H．Houk／Type © Quedius（s．str．）parallelus－ 1951 M． Hatch／Quedius（s．str．）fuliginosus Grav．M．Hatch－1947＂（ 1 § UWBM）． Paratypes：＂Seattle，Wash．April 12，1934＂（1 đUWBM）；＂Seattle，Wash． U．W．Campus，IV－11－1947＂（1 §WBM，N．Vowles coll．）；＂Vancouver， B．C．， 5 March，1949，G．B．Rich＂（1 CNC）；＂Wash．Seattle，Feb．15， 1954，B．Malkin＂（ $1 \not \subset$ FMNH，ex coll．B．Malkin）．
Additional material examined．ARMENIA：Arzakanskaja dolina， Aghveran，［40．51，44．56］，3．VII．1978，leg．R．Rous（1 q MCZ）；NE Di－ lizhan nr．Haghartsin Monastery，40．8013，44．8919， 1450 m，21．V．2001， leg．Shaverdo \＆Schillhammer（4 ô NMW）； 18 km E Dilizhan， 3 km Gosh， $40.7405,45.0191,1850$ m，27．V．2001，leg．Shaverdo（1 ${ }^{7}$ NMW）； 21 km N Hrazdan，Ankavan，40．6286，44．5533， 1000 m，22．V．2001， leg．Shaverdo \＆Schillhammer（ 1 OT NMW）；Teghut，Akhtala，41．0901， 44．8120， $1009 \mathrm{~m}, 28 . V I .2016$ ，leg．J．Müller（ 1 ô cSch）；same locality， 41．0911，44．8131，1020m，20．V．2016，leg．A．\＆J．Müller（ 2 q q ZMHB）． AUSTRIA：Bisamberg，［48．33，16．36］，leg．Luze（1 \uparrow NMW）；S Steier－ mark，［46．91，15．60］（1 § NMW）；Tirol，Musau，［47．53，10．67］，litter， moss，and grass，28．C．1995，leg．M．Uhlig（1 ZMHB）；Wolfpassing， ［48．08，15．06］，VI．1965，leg．Wewalka（ 1 \＆NMW）．BULGARIA： Rila Monastery，［42．13，23．34］， $1150 \mathrm{~m}, 14$. VII．1965，leg．P．Jørum（1 ơ NHMD）．BOSNIA AND HERZEGOVINA：Zeleznica［Zeljeznica］ n．Foinica，［43．89，17．95］，500－700m，13．IV．1969，leg．U．Heinz（1 σ^{\top} ZMHB）．CANADA：British Columbia：Stanley Park，Vancouver， ［49．30，－123．14］，9．VI．1954，leg．D．Lazorko（ 1 đ 1 १ NMW）．CZECH REPUBLIC：Brandeis，［50．18，14．65］，leg．Skalitzky（2 ふ̂̉ NMW）． DENMARK：Vigs \varnothing Bugt， 1 km E of Vigs $\varnothing, 57.0950,8.7394$ ，pine forest， pitfall traps，16．－18．VI．2014，leg．A．Hansen，M．Justesen，A．Solodovnikov \＆L．Kræmer（1 ठNHMD）LєSø：Læsø Klitplantage，57．3082，11．0081， mixed forest，sifting litter，28．V．2013，leg．A．Solodovnikov \＆M．Justesen （1 NHMD）．FAROE ISLANDS：Suderö［Suðuroy］，［61．51，－6．83］，1907， leg．Cornu（ 1 §MNH）．FRANCE：Ain，Torcieu n．Amberieu，［45．91， 5．39］（1 đ̉ ZMHB）；Bretagne，Locronan，［48．09，－4．21］，VII．1983，leg． H．Korge（1 đ ZMHB）；Chigny n．Oise，［49．91，3．76］，leg．Gelchert（1 \＆ZMHB）；Morlaix，Bretagne，［48．57，－3．82］，1．VIII．1950，leg．A．Nils－ son（2 ổ MZLU）．GEORGIA：Borzhom Distr．，Bakuriani，［41．75， 43．52］，27．VII．1947，leg．Bogachev（ 1 § 1 ZIN）；Kartliskij Chreb． ［Kartalinskiy Khrebet］，Sabaduris Tye［Sabaduri Pass］［41．91，44．91］， 1800m，8．VI．1987，leg．Wrase（ 1 đ cSch）；same locality，25．VI．1988， leg．Wrase（1 đMHB）；Trialetski，Khrebet Bakuriani，［41．74，43．83］，
 Zchneti［Tskneti］，［41．69，44．69］，1200m，26．VI．1986，leg．Wrase（1 ठ cSch）．GERMANY：Bayern，Garmisch，［47．48，11．08］，27．IV．1932，leg． Ihssen（1 đ ZMHB）；Bonn，［50．72，7．09］，X，leg．Verhoeff（ $1 \not \subset$ ZMHB）； Bayern，Eschenlohe，［47．58，11．18］，3．VIII．1937，leg．Ihssen（1 ZMHB）； Brandenburg，Strausberg，［52．52，13．85］，17．IV．1987，leg．M．Schülke（1 Z ZMHB）；Dresden，Kötschenbroda，［51．11，13．61］，moss，23．I．1920，leg． Dahl（1 đ ZMHB）；Düsseldrof Unterbach，［51．20，6．89］，27．VII．1974， leg．H．Bremer（ 1 \＆ZMHB）；Marburg，［50．80，8．76］，16．IV．1904，leg． Strand（1 q ZMHB）；Sarstadt，［52．24，9．85］，12．IX．1960，leg．Kuntze（1
§ ZMHB）．ITALY：Aniene，Lazio，［41．95，12．82］， 1200 m，18．III．1964， leg．A．Vigna－Taglianti（1 § cBor）；Barni，Lombardia，［45．91，9．26］， 11．II．2001，leg．Diotti（ $1 \overparen{\delta} 1 \not \subset$ NHMD）；Moliterno，Basilicata，［40．24， 15．86］，30．IX．2000，leg．F．Angelini（1 \odot NHMD）；Pignola，Basilicata， ［40．57，15．78］， $700 \mathrm{~m}, 19 . \mathrm{IV} .1998$ ，leg．F．Angelini（ $1 \delta^{\imath}$ NHMD）；Quer－ ciola，Toscana，［43．84，11．32］，13．IV．2005，leg．Bordoni（1 ô cBor）． LATVIA：Curonia Libau［Liepāja］，［56．49，21．01］，4．IV． 1910 （1 ô 1 q ZMHB）．MOROCCO：Cirque du Jaafar，［32．55，－4．91］，4．III．1964（1 ふ̋ NMW）［potentially mislabelled or introduced specimen clearly belonging to this species］．MYANMAR：Mountains，Tenasserim，Siam Border， ［11．79，99．62］，II．－V．1913，leg．K．G．Gairdner（1 § BMNH）［potentially mislabelled or introduced specimen clearly belonging to this species］．PO－ LAND：Dunajec River n．Sromowce Nizne，［49．39，20．39］，18．VII．1977， leg．F．Hieke（ 3 §o 4 우 ZMHB）；Wyspowy，Krzozonowka River n． Poim，［49．69，20．24］300m，26．VIII．1980，leg．Hieke（1 ठ ZMHB）． PORTUGAL：Azores：Santa Maria， 2 km ENE Almagreira，Miradoro dos Picos，［36．97，－25．07］， 440 m, 19．III．1957，leg．Brinck \＆Dahl（1 ठ MZLU）；São Miguel， 500 m E of Lagoa do Pau Pique，［37．83，－25．74］， pond，7．III．1957，leg．Brinck \＆Dahl（1 đ MZLU）；São Miguel，Pico de Vara，37．8119，－25．2105，1050m，boggy slope 24．VII．2013，leg．V．Assing （ 4 q 早 ZMHB）．Madeira：Levada da Serra do Faial，［32．68，－16．85］， creek， 820 m, 11．IX．2014，leg．A．Kleeberg（ 1 cSch）．ROMANIA： Klaussenburg［Cluj－Napoca］，［46．76，23．62］，leg．Verhoeff（ $1 \diamond^{\lambda}$ ZMHB）； Hermannstadt，Siebenbürgen［Sibiu］，［45．79，24．15］，leg．Skalitzky（1 ठ NMW）；Piatra，Virful Tiganului，Sighetu Marmației，Maramureș，［47．99， 23．53］， 1300 m ，pasture，in rotten logs of beech，14．VI．2006，leg．A． Grabant，Z．György，O．Merkl \＆A．Podlussany（ $1 \precsim$ NHMD）．RUSSIA： Karachay－Cherkessia：Teberda，［43．44，41．74］，VI．1912，leg．Roubal（1 q SNMC）．Moscow Oblast：Bykovo village，VNIIKR institute territory， ［55．61，38．05］，16．X．2013，leg．S．A．Kurbatov（3 ổ ZIN）；Odintsovsky Distr．，near Zhavoronki vill．，［55．64，37．10］，6－13．VIII．2017，leg．E．M． Veselova \＆A．B．Ryvkin（ 1 § ZIN）．Nizhegorodskaja Oblast：near Gorodets town，［56．64，43．47］，mixed forest，17．VIII．1989，leg．A．Kli－ menko（ $1 \precsim$ ZIN）．Novgorodskaja Oblast：Torbino，Novgorod，［58．58， 32．87］，10．IV．1914，leg．A．Filiniev（ 1 ô cBor）．North Ossetia Rep．： Caucasus，Skalisty Khrebet，Fiagdon River，［42．87，44．32］，1700－2200 m，VI．1976，leg．R．Rous（ 3 đ̂̉ 1 q MCZ）．SLOVAKIA：Belá River n．Pribylina，$[49.09,19.81], 600 \mathrm{~m}, 18 . \mathrm{VIII} .1981$ ，leg．Hieke（1 đ〕 3 우 ZMHB）．SPAIN：Bera de Bidasoa，Navarra，［43．27，－1．68］，1．－7．I．2001， leg．A．Anichtchenko（ 1δ NHMD）；Caldetas n．Barcelona，［41．57，2．52］， leg．G．Heine（ 1 ZMHB）；La Molina，Pyrenees，［42．33，1．93］，11．－16． VII． 1963 （1 đ MZLU）；O Rial，Serra do Mirador，［42．74，－7．83］，450m， 3．VI．2003，leg．J．P．Valcárcel（1 cSch）；Picos de Europa，Camping El Redondo［Fuente Dé］，［43．14，4．81］，forest， $1100 \mathrm{~m}, 14 .-17 . V I I .1996$ ，leg． Wrase（1 § cSch）；Plaiaundi，Irun，Guipuzcoa，［43．34，－1．79］，V．2006， A．Anichtchenko（ 1 § 1 NHMD）；Pyrenees，Toses，42．3502，1．9955， 1660 m ，fir－spruce forest with moss，9．X．1997，leg．Zerche（1 SDEI）；
 ZMHB）；Sierra Caurel，［42．59，－7．18］，20．VII．1985，leg．J．C．Otero（5 §す 4 q？ZMHB）；Sierra de Gredos，Hoyos de Collado，［40．35，－5．21］， 1600m，14．IV．1991，leg．Heinz（2 $q \uparrow$ ZMHB）；Sierra Guadarrama，［40．85，
 Val de Zcaray［Ezcaray］，［42．32，－3．02］，forest，1650m，23．07．1996，leg． Zaballos \＆Wrase（ 1 đ̌ cSch）．SWEDEN：Brönnestad，$[56.08,13.70$ ］（1 MZLU）；Omberg，［58．33，14．64］（1 MZLU）；Strömholm，［59．52，16．23］ （1 MZLU）；Visseltofta，［56．42，13．85］（1 MZLU）；Öland：Vickleby， ［56．57，16．46］（1 MZLU）．SWITZERLAND：Wolfenschiessen，［46．91， 8．39］，5．VIII．1963，moss（1 ZMHB）．TURKEY：Abant n．Bolu，［40．61， 31．27］，30．V．1964，leg．H．Korge（ 1 ठ̉ ZMHB）；Akkus n．Ünye，［40．79， 37．01］，28．V．1964，leg．H．Korge（ 12 §o ZMHB）；Ilgaz Dağları，［41．11， 33．90］，17．－21．VI．1960，leg．F．Schubert（1 \uparrow NMW）；n．Ismetpasa \＆ Cerkes，［40．75，32．82］，05．IV．1979，leg．Heinz（1 đNMEG）；Kulakkaya n．Giresun，［40．69，38．33］，1450m，27．VII．1963，leg．H．Korge（2 \circ 우 ZMHB）．UKRAINE：Tausban Bazar，［44．97，34．59］，20．VI．1907，leg． B．Grigoriev（ 1δ ZIN）．UNITED KINGDOM：England：Barnstaple， Devon，［51．07，－4．06］，12．－31．V．1954，leg．Lindroth（1 MZLU）；Devon， Bidefort［51．01，－4．21］，leg．H．Korge（ $2 \uparrow q$ ZMHB）；Kent，Knockholt， 51．3124，0．1191，2．IV．2011，leg．J．J．Shaw（1 đ cJen）；Shrops，Edgmond Harper Adams Uni．Campus，［52．77，－2．42］，6．III．2015，leg．J．J．Shaw （1 đ cJen）；Scotland：Loch Hope，［58．44，－4．62］，19．VII．1987，leg． G．Gillerfors（ 1 o MZLU）．USA：Maine：Booth Bay，［43．85，－69．62］，
15.VIII.1982, leg. Wewalka (1 \uparrow NMW). UZBEKISTAN: Buchara, [39.77, 64.42], leg. Bang Haas ($1 \precsim$ FMNH).

Redescription. Measurements $\widehat{\text { § }}$ ($\mathrm{n}=6$): $\mathrm{HW}=1.89-$ 1.96 (1.93); HL = 1.53-1.71 (1.61); HL/HW 0.81-0.88 (0.84); $\mathrm{PW}=2.36-2.56$ (2.49); $\mathrm{PL}=2.16-2.36$ (2.29); PL/PW 0.87-0.94 (0.92); EW $=2.51-2.67$ (2.61); $\mathrm{EL}=$ 2.36-2.49 (2.44); EL/EW 0.92-0.96 (0.93); EL/PL 1.041.10 (1.06); PW/HW 1.31-1.60 (1.49); forebody length 6.04-6.56 (6.34). §? $(\mathrm{n}=4): \mathrm{HW}=1.78-2.00$ (1.89); $\mathrm{HL}=1.51-1.64$ (1.58); HL/HW 0.82-0.85 (0.84); PW = 2.22-2.56 (2.41); PL=2.07-2.40 (2.18); PL/PW 0.86-0.94 (0.91); $\mathrm{EW}=2.44-2.62$ (2.52); $\mathrm{EL}=2.20-2.49$ (2.33); EL/EW 0.90-0.95 (0.92); EL/PL 1.03-1.15 (1.07); PW/ HW 1.47-1.55 (1.52); forebody length 5.78-6.53 (6.10).

Very large species; body black (Fig. 7B).
Head black, slightly transverse; eyes large (EyL/TL $=3.00-4.10$ (3.55)) not protruding; microsculpture of transverse waves, four punctures between anterior frontal punctures (Fig. 6B); antennae and palpi pale reddish, antennae long, all antennomeres clearly elongate.

Thorax: pronotum black, slightly wider than long, clearly wider than head, microsculpture of transverse waves, three punctures in dorsal row and two in sublateral row with posteriormost puncture reaching level of middle puncture of dorsal row; scutellum smooth and glabrous; elytra black, uniformly pubescent, wider than long, of equal length as pronotum; legs dark brown with inner face of tibia darkened and tarsi paler.

Abdomen black, tergites uniformly punctured, slightly iridescent.

Male. Aedeagus (Fig. 11C): paramere broad, rather parallel-sided, reaching apex of median lobe, with sensory peg setae forming two single rows following parameral lateral margins for $2 / 3$ of their length; median lobe with apical part dorsoventrally flattened to form a plate-like structure; internal sac with two pairs of sclerites.
Differential diagnosis. Within the fuliginosus-group Q. curtipennis is very close to Q. fuliginosus. Both species are very frequently encountered, often co-occurring, nearly non-distinguishable from each other based on external morphological characters alone. Our study of hundreds of specimens across their entire distribution ranges revealed that Q. curtipennis always have pale antennomeres 1-3, whereas Q. fuliginosus have them at least slightly darkened. A negligible fraction (ca. 2%) of Q. fuliginosus with pale basal antennomeres are mostly teneral. Antennae are generally more elongate in Q. curtipennis, as opposed to being stouter in Q. fuliginosus (Fig. 7). Also Q. curtipennis has an almost smoothly rounded head with the eyes protruding while Q. fuliginosus has eyes clearly protruding and thus making its head seem more quadrate (Fig. 6). Only some rare specimens, maybe hybrids, faded and very old museum specimens, or actual rare intraspecific variants, do not fit these trends and their identity can be ascertained only through examination of the aedeagi. In Q. curtipennis, contrary to Q. fuliginosus, the paramere lacks clear medial attenuation, the apical part of median lobe dorso-ventrally flattened, and internal sac with 2 pairs of clear sclerites.

The examined material for both species clearly shows that Q. curtipennis is much more common in the south and west and becomes increasingly rare towards the north and east of its range, while Q. fuliginosus shows an opposite trend. Quedius curtipennis seems to be more common in warmer and drier areas with more sandy soils, where Q. fuliginosus seems to prefer wetter, colder and more humus rich soils.

Quedius curtipennis is also very similar to Q. afrofuliginosus, from which it is easily recognized by having no additional punctures between anterior and posterior frontal punctures. Besides, distributions of Q. curtipennis and Q. afrofuliginosus, as far as known, are allopatric.

From Q. levicollis, Q. curtipennis is easily recognized by unpunctured and glabrous scutellum.
Lectotype designation. Bernhauer (1908) described Q. curtipennis as a variety of Q. fuliginosus without giving any exact data on the type material. He had stressed that it is very common at Faroe Islands and mentioned its occurrence in Central Europe as well as in 'Romania' and even 'Buchara'. Here (see above), we have listed specimens from Faroe Islands and 'Buchara' at the FMNH which qualify as syntypes of Q. curtipennis and which we recorded long ago but were unable to re-examine in detail recently. There is no doubt about the identity of the syntypes from Faroe Islands. However, a syntype from 'Buchara' must be carefully checked. Given, additionally, some ambiguity about the geographic origin of that Middle Asian syntype (see Distribution), a syntype male from Faroe Islands is here designated as a lectotype for Q. curtipennis.
Synonymic notes. Quedius parallelus was described by Натсн (1957) in his work on beetles of the Pacific Northwest of North America without reference to European species. Based on the description of Q.parallelus, Korge (1962b) suspected it to be identical to the European Q. curtipennis. This was confirmed by Smetana (1971a) who studied the type material of Q.parallelus and found them conspecific with 2 male syntypes of Q. curtipennis from Faroe Islands at the FMNH. It is now firmly known that Quedius curtipennis occurs in the North American West (Smetana 1971a) and East Coasts (Smetana 1990, Brunke \& Marshall 2011).

Quedius gracilis Stephens, 1832 was described from London, UK. Later, Stephens (1837) had it as a variety of Q. tristis (now Q. levicollis). In more recent works it was cited as a synonym of Q. fuliginosus. Based on examination of its two syntypes by Roger Booth (BMNH, pers. comm.) on our request, it was established that these specimens are conspecific with Q. curtipennis. As the name is older than Q. curtipennis we here establish the prevailing use of Q. curtipennis as opposed to the rule of priority (ICZN Article 23.9). Quedius curtipennis has been used at least 26 times in the last 50 years by more than ten authors (Bordoni 1974b, 1976b; Pope 1977; Coiffait 1978; Outerelo 1978; Burakowski et al. 1980; Tóth 1984; Drugmand 1987; Nowosad 1990; Borges 1990; Ciceroni \& Zanetti 1995; Owen 1997; Outerelo et al. 1998; Assing 2001; Uhlig et al. 2006; Tronquet 2006; Majka \& Smetana 2007; Özgen 2011; Brunke \& Marshall 2011; Webster
et al. 2012; Magura et al. 2013; TóTHMÉréSz et al. 2014; Semenov et al. 2015; Semionenkov et al. 2015; Salnitska \& Solodovnikov 2018a, 2019). On the other hand, Q. gracilis has only been used once after its description as a valid species which was more than 150 years ago (Curtis 1837). This deems the name Quedius gracilis Stephens, 1832 a nomen oblitum in relation to Quedius curtipennis Bernhauer 1908 (nomen protectum). Quedius gracilis Stephens, 1832 syn. rev. is thus moved from synonymy with Quedius fuliginosus (Gravenhorst, 1802) to synonymy with Quedius curtipennis Bernhauer 1908.
Bionomics. Based on published data as well as our observations, Q. curtipennis is a polytopic, somewhat thermophilous species found in a large range of habitats and various ground-based microhabitats with a tendency to occur in open woodlands. For example, in Central and Eastern Europe it was found under stones in dry pastures in Poland (Dvořák 1965), in xerothermous grassland in Germany (Assing 2001), and in closed oak forest with extensive ground vegetation and shrub cover in Hungary (Tóthmérész et. al 2014). We have collected this species in a mixed forest on the sandy dry island of Læsø in Denmark. There are also records from mole (Talpa europaea) nests built from grasses and reeds on wet meadow in Poland (Nowosad 1990). In south-western Europe it was recorded from under rock in pine forest at an altitude of 1550 m in Central Spain (Outerelo 1978) and from a cave in Northern Spain (Outerelo et al. 1998). On the Azores (Smetana 1970) it was found under rocks at the shore of a freshwater lake at an elevation of 400-500 m. Presumably, the nest or cave-based subterranean records are accidental occurrences, as there is no evidence of the species preferring these habitats. The species is found within the wide range of elevations from sea level in the northern part of its range up to about 2.000 m the southern part.

As an introduced species in North America, it was found especially around human settlements in various debris, under rocks, and in greenhouses. Some specimens were also collected by sifting barnyard litter on a pasture in Oregon (Smetana 1978a) and in natural habitats away from settlements (in moss, in leaf litter, etc.).

Pupae of the species are described in Outerelo (1978). Adult females from Wytham, UK were observed to contain eggs between October and January (Frank 1969).
Distribution. Quedius curtipennis is distributed from the Atlantic coast of Europe to Asia Minor, east to the Ural Mountains and Middle Asia (Fig. 18). It is also present on the islands of Madeira, the Azores, and the Faroe Islands. One specimen, which we studied was found in the central Morrocan mountains, and one old specimen from the type series is from 'Buchara', Uzbekistan. These are the only specimens we know from North Africa and Middle Asia, respectively. The species' occurrence in these areas needs confirmation to rule out possible mislabelling. Most previous records of Q. curtipennis (and Q. fuliginosus) from North Africa could be assigned to Q. afrofuliginosus, which is externally very similar. As Q. curtipennis does not seem to occur in southern Spain, Corse and Sardinia, it is very likely absent from North Africa too.

Quedius curtipennis is also known as introduced to at least four regions of North America (Fig. 12). The presence of Q. curtipennis in the Nearctic was first recognized by Smetana (1971a) when he reviewed specimens of Q. parallelus, a newly described species from the Nearctic. Quedius parallelus was found to be identical to the Palearctic Q. curtipennis, something already hinted by Korge (1962b). One specimen from the type series of Q. parallelus was collected in 1934 near the city of Seattle in Washington, which is currently the oldest known record of the species from North America. In 1971, the species was already found in a relatively large area along the Pacific coast of Oregon, Washington, and British Columbia (SmeTANA 1971a), suggesting that it may have been established in North America even prior to 1934. Currently, Q. curtipennis in western North America is still known only from these states and provinces, where it is found as far East as Cranbrook, British Columbia in the Canadian Rockies (from web www.boldsystems.org) (teal in Fig. 12). One to three additional introductions of Q. curtipennis were later reported from the East Coast, in New Hampshire, USA, as well as Ontario and Nova Scotia, Canada. Specimens from near Guelph in Ontario were collected in 1976 (Brunke \& Marshall 2011), from New Hampshire in 1983 (Smetana 1990) and from Nova Scotia in 1997 (Majka \& KlimaSZEWSKI 2008).

Quedius fuliginosus (Gravenhorst, 1802)

(Figs 1, 2A,E, 3, 6C, 7C, 11D, 12, 18)

Staphylinus fuliginosus Gravenhorst, 1802: 34 [Type locality: Brunsviga]. Note: See lectotype designation by Gusarov (1993)
Quedius granulipennis Motschulsky, 1858: 656 [Type locality: Autriche]. Note: See lectotype designation by Gusarov (1993)
Quedius impunctifrons Delahon, 1915: 395. [Type locality: Mark Brandenburg]
Quedius jelineki Krása, 1904: 81 [Type locality: Vrané n. Vlt, Bohemia] Quedius latus Hochhuth, 1851: 30 [Type locality: Kaukasien, Alagez--Gebirge], syn. nov.
Quedius molochinicolor Roubal, 1931: 1 [Type locality: RCS.: Harmanec] Quedius picicornis Stephens, 1832: 215 [Type locality: London]
Quedius subfuliginosus Britten, 1944: 290 [Type locality: England: Cotterill Clough, Cheshire]
Quedius viduus Sawada, 1965: 17 [Type locality: Japan, Pref. Nagano, Mt. Jônen], syn. nov.

References. MARSHAM (1802): 504 (characters); Latreille (1804): 319 (characters); Gyllenhal (1810): 301 (as tristis; characters); MANNERHEIM (1830): 25 (distribution); (1831): 439 (distribution); NORDMANN (1837): 78 (distribution); Erichson (1839a): 490 (distribution); (1840): 537 (characters); HEER (1839): 276 (characters); Dufour (1843): 33 (characters); Kolenati (1846): 22 (distribution); Gravenhorst (1847): 232 (characters); НосннuTH (1849): 151 (characters); (1862): 46 (distribution); Redtenbacher (1849): 710, (1857): 203, (1874): 200 (characters); Kiesenwetter (1851): 419 (distribution); Hardy (1851): 33 (biology); Küster (1853): 62 (characters); Fairmaire \& Laboulbène (1856): 539 (characters); Kraatz (1857): 503 (characters); (1858): 58 (distribution); Peyron (1858): 428 (distribution); Fauvel (1865): 293 (biology); (1874): 289 (characters); Seidlitz (1875): 267 (characters); Mulsant \& Rey (1876): 686 (characters); Sahlberg (1876): 24 (distribution); Fowler (1888): 237 (characters); GANGLbaUER (1895): 403 (characters); POPPIUS (1905): 9 (distribution); Porta (1907): 128 (characters); REITTER (1909): 111 (characters); Johansen (1914): 363 (characters); Eichelbaum (1914): 339, (1915): 91 (morphology); Fiori (1915): 16 (distribution); Munster (1923): 195 (distribution); Gridelli (1924): 79 (characters); Portevin (1929): 341 (characters); Wüsthoff (1938): fig. 21 (mor-

Fig. 11. Aedeagus of Quedius s. str. A - Q. afrofuliginosus Gusarov, 1991; B - Q. levicollis Brullé, 1832; C - Q. curtipennis Bernhauer, 1908; D - Q. fuliginosus (Gravenhorst, 1802). I - parameral view of whole aedeagus; II - apices of paramere in antiparameral view with peg setae; III - lateral view of whole aedeagus; IV - apices of median lobe at an angle between parameral and lateral view.
phology); Paulian (1941): 263 (larval characters); Hinton (1945): 70 (characters); Fagel (1948): 196 (characters); Jeannel \& Jarrige (1949): 378 (biology); HANSEN (1952): 140 (characters); Smetana (1958): 361 (characters and biology); (1962): 133 (characters and distribution); (1964): 79 (distribution); (1976): 22 (distribution); (1978c): 85 (distribution); (1993): 50 (distribution); PALM (1963): 139 (characters); LOHSE (1964): 211 (characters); HORION (1965): 272 (distribution); PотOTSKAIA (1967): 84, 87 (larval characters); Kasule (1968): 53 (biology); (1970): 63 (larval characters); Korge (1968): 52 (characters); Szujecki (1968): 735 (distribution); Frank (1969): 266 (biology); (1982): 46 (list of parasites); Bordoni (1974): 12, (1976a): 89 (characters); (1976b): 238 (distribution); Osella \& Zanetti (1975): 120 (biology); Pope (1977): 31 (distribution); Coiffait (1978): 190 (distribution); Topp (1979): 19 (development); BuraKowski et al. (1980): 134 (distribution); То́тH (1984): 117 (characters); Nowosad (1990): 143 (biology); AlLEN (1990): 4 (biology); Whitehead (1991): 6 (biology); Gusarov (1991): 9 (identity); (1993): 72 (synonymic notes, lectotype designation); Welch (1993): 229 (morphology); Hodge \& Jones (1995): 42 (characters); Ciceroni \& Zanetti (1995): 32 (distribution); Staniec (1996): 117 (pupal characters); (2010): 22 (distribution); Owen (1997): 149 (biology); STANIEC (1999): 52 (characters of pupa); Derunkov (2005): 279 (distribution); Uhlig
et al. (2006): 54 (distribution); Tronquet (2006): 102 (distribution); Majka \& Smetana (2007): 428 (distribution); Mazur et al. (2007): 29 (distribution); STAN (2009): 242 (distribution); SEMENOV et al. (2015): 127 (distribution); Semionenkov et al. (2015): 331 (distribution); SALnitska \& Solodovnikov (2018a): 125, (2019): 48 (distribution); Puchkov et al. (2020): 43 (distribution).
Type material examined. Quedius fuliginosus: Lectotype ${ }^{\wedge}$ (ZMHB), labelled: "coll. Hellwig / Paratypus fuliginosus Grav.".

Quedius granulipennis: Lectotype $\widehat{\text { on (ZMMU), labelled: "Austria / }}$ Quedius granulipennis Motsch. Austria".

Quedius latus: Neotype (ZMHB), designated here, labelled: "ARMENIA (AR-16-19) 35 km NW Sisian, $39^{\circ} 40^{\prime} 59^{\prime \prime} \mathrm{N} 45^{\circ} 46^{\prime} 50$ " $\mathrm{E}, 2070$ m , stream valley, litter beneath bushes near stream sifited 3.VII.2016, leg. M.Schülke / Quedius (Quedius) fuliginosus (Gravenhrost) det. M. Schülke 2019 / Museum für Naturkunde Berlin Sammlung M. Schülke / Neotype Quedius latus Hochhuth, 1851 A.K. Hansen \& A. Solodovnikov des. 2021".

Quedius molochinicolor: Syntype q (SNMC), labelled: "Slovensko Harmanec Roubal 26.IX. 1930 / f. molochinicolor mi [my] type / [red label] / fuliginosus f. molochinicolor cotypus".

Additional material examined. ARMENIA: N Yerevan, NW Hrazdan, 40.635044 .4602 , grassy W slope with scattered Salix, litter and roots of grass sifted, $2500 \mathrm{~m}, 26$.VI. 2016 , leg. M. Schülke ($1+\mathrm{cSch}$); same locality, 40.6944, 44.4878, stream valley, mixed decidious forest, litter and grass roots sifted, 2110m, 28.VI.2016, leg. M. Schülke (1 q cSch). AUSTRIA: Arbesbach; [48.49, 14.95], 1.-13.VII.1951, leg. Schubert (1 q NMW); Brunnlust, Moosbrunn, Schwechat, [48.01, 16.45], 12.VI.1997, leg. Schillhammer (1 đNMW); Faak, Kärnten, [46.56, 13.91], 5.VIII.1968, leg. Wewalka ($1 \not \subset$ NMW); Immerkrems, [46.96, 13.72], subalpine, 1400 - 2000 m, VI.1954, leg. Lindroth (1 \& MZLU); Plesch-Kogel n. Rein, [47.13, 15.28], 590m, sifting forest litter, 20.VI.1995, leg. Zerche \& Behne (1 § SDEI); Rekawinkel, [48.17, 16.02], leg. Briet (1 ô NMW). BULGARIA: Sofia, Tschernia [Cherni Vrah], [42.56, 23.27], 600m, 22.VI.1988, leg. Behne (1 SDEI); Sredna Gora, S Koprivschtiza, 42.8777, 25.0544, moss under Picea, 1000m, 29.VI.1997, leg. Zerche \& Behne (1 q SDEI); Stara Plania, 5km S Ribaritza, 42.75, 24.38, 750m, 7.VI.1997, Beech forest, sifting, leg. Zerche \& Behne (1 đ SDEI); SW-Pirin, Kurort Popina Laka, 16 km NO Sandanski, [41.56, 23.27], ca. 1350m, Pinus and Picea, under snow remains, sifted, 8.IV. 2005 leg. Zerche \& Behne (1 ठ̋ SDEI); W Rhodopen, S Velingrad, Tschernowroh, [41.68, 24.05], 1600m 10.VI.1987, leg. Zerche \& Behne (1 \& SDEI). CZECH REPUBLIC: Podyjí Nat. Park, forest at river Dyje valley ca. 2.5 km NW of Havraníky, $48.8300,15.9804$, h240m, sifted flood debris, 8.VI.2016, leg. A. Solodovnikov, J. Jenkins Shaw, A. Hansen ($1+$ NHMD). DENMARK: Amager, Kalvebod Fælled, Store Høj Søen, 55.6159, 12.5606, sifting leaf litter, debris near lake, 17.III.2019, leg. A. K. Hansen ($1 \bigcirc 1 \uparrow$ NHMD); Lisjerg Forest, 8 km N of Aarhus, $56.2335,10.1688$, h85m, edges of forest lakes,
 $4 \not \subset+$ NHMD); Nors Sø, S of Nors Sø, 57.0197, 8.6197, pitfall trap, dry pine forest, 16-18.VI.2014, leg. Solodovnikov, Hansen, Kræmer, \& Justesen (1 δ^{\top} NHMD). GEORGIA: N of Sviri, [41.73, 42.99], pitfall traps, 14.IV.-11.VI.2018, leg. D. Formynikh ($1 \widehat{\text { cSch}}$); Tusheti, n. Omalo, Abanos Pass, [42.27, 45.51], river valley, 1700m, 14.-17.VII.2016, leg. Heinz (1 NMEG). GERMANY: Bayern, Eschenlohe, [47.58, 11.18], 3.VIII.1937, leg. Ihssen ($1 \bigcirc^{\lambda} 1 \not \subset$ SDEI); Berlin-Blankefelde, [52.62, 13.39], 8.V.1994, leg. D. Wrase (1 ō SDEI); Biesenthal, [52.76, 13.61], 500m, field sandish-clayish ruderal, 1.IV.2002, leg. D. Wrase ($1 q$ SDEI); Brandenburg Kiesfläche 1km S Oderberg, [52.84, 14.04], 13.X.1990, leg. F. Hieke (1 ${ }^{\lambda}$ SDEI); Brandenburg, Oranienburg, Briesetal, [52.71, 13.31], 12.IV.1992, leg. J. Ziegler (1 SDEI); Dars, Zingst, Freesenbruch, [54.43, 12.68], 20.VII.1987, leg. D. Wrase (1 q SDEI); Erzgebirge, Prinzgehöhle, [50.63, 12.67], 29.IX.1921, leg. Uhmann (1 q SDEI); Erzgebirge, W Teil, SW Kammweg \& Morgenröthe, [50.43, 12.51], 4.V. 1990 leg. O. Sorge (1 ${ }^{7}$ SDEI); Finkenkrug n. Berlin, [52.56, 13.03], 12.IV.1898, leg. Dahl (1 ${ }^{7}$ SDEI); Kehlheim Dürnbacher Forst, [48.74, 11.75], (1 \& SDEI); Liepnitzsee, n. Wandlitz, [52.74, 13.51], 01.X.1989, leg. M. Uhlig (1 § SDEI); Marburg i Hess, [50.81, 8.77], 16.IV.1904, leg. Strand (1 § 1 Q SDEI); n. Märkische Buchholz, Königs Wusterhausen, [52.11, 13.76], 12.VI.1980, leg. H.Wendt ($1 \subset$ SDEI); Martinfeld, Krs. Heiligenstadt, [51.28, 10.18], 21.-29.VI.1990, leg. M. Uhlig (1 ठ SDEI); München-Grünwald, [48.04, 11.53], 3.VII.1931, leg. Ihssen (1 \uparrow SDEI); Nauen, [52.61, 12.87], 19.III.1910, leg. M. Ude (1 ${ }^{\top}$ SDEI); Sächsischen Schweiz, Rathen, [50.95, 14.08], 1.V.1977, leg. K. H. Mohr (1 q SDEI); Schwäbisch Gmünd, Röben, [48.79, 9.81], 4.V. 1953 (1 SDEI); Seilershof, Gransee, [53.06, 13.18], 22.V.1988, leg. M. Schülke (1 q SDEI); Suekow, [53.07, 11.79], XI.1974, leg. M. Moritz (3 §̄ SDEI); Wandlitz, Liepnitzsee, [52.74, 13.51], 6.I.1981, leg. M. Uhlig ($1 \circlearrowleft 2$ ¢\uparrow SDEI); Wildeschütz n. Deuben Silbersee Schilfgürtel, [51.12, 12.07], 11.X.1987, leg. M. Uhlig (1 q SDEI). ITALY: Alpie Orobie, Bergamo Castione \& Passo delia Presolana, 45.9202, 10.1001, 1170m, 18.-21.VI.2006, leg. P. Schnitter (1 \nearrow NMEG); Basilicata, Pognola Ris. L. Pignola, [40.58, 15.74], $700 \mathrm{~m}, 23 . X I I .1996$, leg. F. Angelini (1 cBor); Trentino, Lago di Tenno, N Riva, [45.93, 10.81], 560m, 2.VII.1994, leg. L. Zerche (1 q SDEI). KAZAKHSTAN: Altai, Bukhtarma riv., Chingistai, [49.19, 85.88], 30.VIII.2010, leg. V. A. Kastcheev (1 § ZIN); Akshatau Mt., NW Ayaguz, Semipalat, [48.25, 79.64], forest leaf litter, 17.VII.1962, leg. L. V. Arnoldi (1 ZIN); Ivanovsky Mt. Ridge, 32 km S Leninogorsk, [50.04, 83.51], 1300 m, 14.VIII.1986, leg. I. I. Kabak (1 ZIN). RUSSIA: Altai Krai: Talmenskij Distr., E of vill. Litvinovka 53.6918, 83.7309 , 200m, mixed forest, sifted leaf litter, 24.VI.2019, leg. A. Solodovnikov, A. K. Hansen \& A. Tokareva (1 NHMD); Chemalskij Distr., SE of vill. Edigan 51.0546, 86.3791, 1030m, larch-fur forest, sifted
leaf litter, 27.VI.2019, leg. A. Solodovnikov \& A. K. Hansen (1 NHMD); Chemalskij Distr., Verkhnij Berulu river, 51.3035, 86.1221, 790m, pi-ne-birch forest, sifted leaf litter, 28.VI.2019, leg. A. Solodovnikov, A. K. Hansen \& M. J. Justesen (1 NHMD). Bashkorostan Rep.: Buzdyakskij Distr., nr vill. Arslanovo 54.6485, 54.3789, 229m, at creek bank, 11. VI.2019, leg. A. Solodovnikov \& A. Tokareva (1 NHMD); Mechetlinskij Distr., Oka river nr vill. Bolshaya Oka, 56.1085, 58.1977, 224m, debris and ground at river bank, 12.VI.2019, leg. A. Solodovnikov \& A. Tokareva (1 NHMD). Irkutsk Oblast: Baikal, Chamar-Daban, Solsan Valley, [51.36, 104.15], 17.-21.VI.1978, leg. Schilenkov (1 §̉ cSch); Baikal, Baikalsk, Solsan River near mouth, [51.47, 104.37], 20.VII.1989, leg. Hieke ($1 \delta^{\lambda} 1$ SDEI); Khamar-Daban Mts., valley of Snezhnaya River, [51.06, 103.99], 5.-8.VI.2007. leg. A. Shavrin (3 §o 6 q q cSha); Podvoloshino, Valley of Nizhnyaya Tungska River, [58.25, 108.42], 4.-9. VIII.2008, leg. Shavrin \& Enustschenko 18 km N Ust-Kut, Valley of Lena River, [56.95, 106.14], 26.-28.VII.2008, leg. Shavrin \& Enustschenko (1 q ZIN) Valley of Bodchakta River, [57.11, 106.61], 10.-11.VIII.2008, leg. Shavrin \& Enustschenko (1 § ZIN). Kaluga Prov.: $4-5 \mathrm{~km}$ SE from Chernaya Grayz, [54.96, 36.86], V.1988, leg. I. Ushakovl (1 ठ cRyv); Kozelsk Reg., Berezich glass factory, Novaya Derevnya village, NR "Ugra", [56.27, 40.25], broad leaved forest, leaf litter near stream (stagnant channel), 13.VII.2017, leg. M. Salnitska ($1 \not \subset \mathrm{ZIN}$). Kemerovskaja Oblast: Tashtagolsky Distr., Shorsky Nat. Park, 5 km SSE Tajmet [Verkhnij Tajmet] village, [52.48, 88.27], cedar forest, 8-18.VI. 2012, leg. L. A. Trilikauskas ($1 \AA^{\top} 1 q$ ZIN). Krasnoyarskij Krai: nr. Divnogorsk town, left tributary of Enissey river, [55.95, 92.38] cedar-birch forest, in leaf litter, 1.VI.1988, leg. A. B. Ryvkin (2 ZIN); Enissey distr., environs of vill. Ust-Pit, [58.98, 91.76], 02-10.VII.1995, leg. A. Rybalov (2 ふ̋ 1 q ZIN); Nature Preserve 'Stolby' [Kranoyarskie Stolby], river Mana near Berly hut, [54.98, 94.00], stream edge, in moss and litter, 20.VI.1990, leg. A. B. Ryvkin ($1 \bigcirc$ ZIN); Niznaya Lebedyanka river, [61.96, 89.45], 22.VI.1992, leg. V. S. (2 ô cRyv). Leningrad Oblast: Kirovsky Distr., Turishkino vill., Mga River, 59.684306, 31.2202, flood plain, meadow in forest, leaf litter, 02.VI.2018, leg. M. Salnitska, K. Fadeev (1 ZIN); Leningrad [Sankt Petersborg], in litter, 29.VII.1976, leg. Schilow (3 ふెठ SDEI). Moscow Oblast: Odintsovsky Distr., Zvenigorod Biological Station of MSU, [55.70, 36.72], soil sample, Betula forest, 7.VIII.1981, leg. K. G. Mikhailov (1 § cRyv). Novgorod Oblast: Staraja Russa, [57.99, 31.35], leg. Kessler (1 NMW). Perm Krai: Perm town, ravine meadow on the right bank of Kama river, Motovilikha, [58.04, 56.30], 1989, leg. V. O. Kozminykh (1 § ZIN). Rep. of Adygea: Caucasus, Adygeja, Guzeripl, Belaja River, [43.99, 40.13], 2000m, 23.VI.1999, leg. Putchkov ($1 \not \subset \mathrm{cSch}$). Rep. of N. Ossetia-Alania: N Ossetia Nat. Res., mt. Kariuchoch, Kora pass. (Alansky), 42.8301, 44.2123, $\sim 2200 \mathrm{~m}$, leaf litter Betula sp., 24.V.2017, leg. M. Salnitska (1 ZIN). Sverdlovsk Oblast: Visimskij Nature Res., 57.3733, 59.7734, 570m, spruce dominated forest, pitfalls, 18.VI.2019, leg. A. Solodovnikov, A. K. Hansen \& A. Tokareva (1 NHMD); W of vill. Elan', 57.6406, 63.6220, 100m, mixed forest, sifted leaf litter, 20.VI.2019, leg. A. Solodovnikov, A. K. Hansen \& A. Tokareva (1 NHMD). Tyumen Oblast: Uvatsky Distr., $8-14 \mathrm{~km} \mathrm{~S}$ from vill. Gornoslinkino, near Tobolsk station of IEE RAS, [58.68, 68.79], 11.VI.2004, leg. A. B. Ryvkin (2 §§ $1 q$ cRyv); Tyumenskij Distr., Tura river nr vill. Konyashina, $57.2925,65.0281,80 \mathrm{~m}$, flood forest, sifted leaf litter, 21.VI.2019, leg. A. Solodovnikov, A. K. Hansen \& A. Tokareva (1 NHMD); nr Zavodoukovsk, 56.5329, 66.5689, 116m, pine-birch grove, sifted leaf litter, 21.VI.2019, leg. A. Solodovnikov, A. K. Hansen \& A. Tokareva (1 NHMD). SLOVAKIA: Belá River n. Vavrisovo n. Lipt. Hrádek, [49.06, 19.77], 18.VII.1980, leg. Hieke ($12 \delta^{\top} \delta^{\top} 1 \circ$ SDEI); Gombasek n. Rožňava, [48.57, 20.45], 6.VIII.1981, leg. Hieke (1 \& SDEI); Harmanec, [48.79, 19.07], 26.IX.1930, leg. Roubal (1 \uparrow SNMC); Pieninsky National Park, [49.38, 20.51], 18.VII.1993, leg. Zerche (1 § SDEI); Rudohorie, Hnilec-Tal n. Švedlár, [48.83, 20.51], 8.VII. 1981 leg. Hieke (1 q SDEI). SLOVENIA: Triglav Nat. Park, river Soča valley, ca. 3 km SW Trenta; Obcina Bovec, 46.3667, 13.7255, sifting flood debris and under stones, 03.VI.2016, leg. A. Solodovnikov, A. Hansen. \& M. Salnitska (1 NHMD). SWEDEN: Månsatorp, 5 km SW of Vittsjö, Skåne; 56.3105, 13.5955, hand collected in/under moss, 21.I.2018, leg. A. K. Hansen (1 ठ $2 \not \subset \bigcirc$ NHMD); Ödeshög V, Ekopark Omberg, Storpissan nature reserve, $58.3344,14.6508$ sifting leaf litter on stream edge; 30.V.2017, leg. D. Żyła, K. Koszela, A. Solodovnikov (1 ō NHMD); Vegesjö, Skåne, 56.3031, 13.6473, banks of bog in wet sphagnum, 100 m , 22.IV.2018, leg. A. K.

Hansen (1 \uparrow NHMD). TURKEY: Harçbeli Pass, Ordu, [40.59, 37.64], 1900 m, 28.V.1989, leg. Schönmann \& Schillhammer (1 \& NMW); Sümela, Altındere, [40.68, 39.65], 10.-11.VI.1969, leg. P. Brignoli (1 q cBor). UNITED KINGDOM: ENGLAND: Norwich, Norfolk, UEA Campus, [52.62, 1.23], 3.III.2013, leg. C. Billet (1 ô cJen). UKRAINE: Kanev [Kaniv] near Kiew [49.75,31.46], 28.I.1988, leg. Zerche ($2 \nrightarrow Q$ SDEI); Ivano-Frankovo, ca. 40 km WNW of Lvov, Rostochye, State Reserve, [49.94, 23.65] Quercus, Pinus etc. forest, 16-20.IX.1999, leg. S. Golovatch ($1 \precsim$ cRyv); N Yablunytsia vill., S Gorgany Mnts., valley Prut riv., [48.34, 24.45], 800 m , pitfalls, 22-24.V.2018, leg. Panin R. (1 cGon). UZBEKISTAN: Tashkent, [41.29, 69.25], near railway station, plant residues, 24.V.1986, leg. S. A. Kurbatov ($1 \bigcirc 1 \not \subset$ ZIN).

Redescription. Measurements $\widehat{\jmath}$ ($\mathrm{n}=5$): $\mathrm{HW}=1.78-$ 1.89 (1.81); HL = 1.40-1.51 (1.46); HL/HW 0.79-0.83 (0.80); $\mathrm{PW}=2.22-2.42$ (2.31); $\mathrm{PL}=2.04-2.20$ (2.13); PL/PW 0.90-0.98 (0.92); $\mathrm{EW}=2.44-2.51$ (2.48); $\mathrm{EL}=$ 2.29-2.38 (2.32); EL/EW 0.91-0.96 (0.93); EL/PL 1.051.14 (1.09); PW/HW 1.54-1.60 (1.58); forebody length 5.78-6.09 (5.91). qQ $(\mathrm{n}=5): \mathrm{HW}=1.80-1.96$ (1.84); $\mathrm{HL}=1.42-1.51$ (1.46); HL/HW 0.77-0.81 (0.80); $\mathrm{PW}=$ 2.22-2.42 (2.32); PL=2.09-2.13 (2.10); PL/PW 0.88-0.94 (0.91); $\mathrm{EW}=2.40-2.60$ (2.50); $\mathrm{EL}=2.29-2.44$ (2.34); EL/EW 0.91-0.97 (0.94); EL/PL 1.08-1.15 (1.11); PW/ HW 1.54-1.66 (1.59); forebody length 5.82-6.09 (5.90).

Large species; body black (Fig. 7C).
Head black, clearly transverse, with eyes very large (EyL/TL = 3.00-3.90 (3.54)) and clearly protruding, microsculpture of transverse waves, four punctures between anterior frontal punctures on frons (Fig. 6C); antennae and palpi darkened, except the joints, which are slightly paler, antenna with all antennomeres elongate. Thorax: pronotum black, slightly wider than long, wider than head, microsculpture of transverse waves, three punctures in dorsal row and two in sublateral row with the posteriormost puncture not reaching level of second puncture of dorsal row; scutellum smooth and glabrous, elytra black, uniformly pubescent, slightly wider than long, slightly longer than pronotum; legs dark brown to black with tarsi slightly paler.

Abdomen black, tergites uniformly punctured, clearly iridescent.

Male. Aedeagus (Fig. 11D): paramere broadly lanceolate, with clear medial attenuation, sensory peg setae forming two subapical, longitudinal rows along paramere edge apically but slightly turning inwards at half their length. Median lobe with two small but distinct teeth in front of basal part of parameral peg setae. Internal sac without clear sclerites.
Differential diagnosis. Even though Quedius fuliginosus differs from all other members of the fuliginosus-group by having the basal antennomeres at least slightly darkened, this is not always obvious in teneral or old museum specimens as coloration is altered. It is easily distinguished from Q. levicollis by the glabrous scutellum. It can be safely distinguished from Q. curtipennis by the aedeagi. In Q.fuliginosus, contrary to Q. curtipennis, the paramere has clear medial attenuation, a median lobe with the apical part being robustly pyramid-shaped and not laterally flattened, and an internal sac with no clear sclerotization. Subtle external difference between Q. fuliginosus and Q. curtipennis includes slightly stouter antennae, more tran-
sverse head, larger eyes clearly protruding thus making the head shape more quadrate, as well as slightly longer elytra in Q. fuliginosus. Also, Q. fuliginosus is very similar to Q. afrofuliginosus, but is easily recognized from the latter by having no additional punctures between anterior and posterior frontal punctures. It is also unclear if the two species have a distributional overlap.
Synonymic notes and neotype designation. Quedius fuliginosus was described from environs of Braunschweig, North Germany (Gravenhorst 1802). Two syntypes from the collection of Johann Christian Ludwig Hellwig (1743-1831) were revised by Gusarov (1993), who designated a lectotype to represent our current concept of Q. fuliginosus, while the paralectotype was identified as Q. curtipennis. Gusarov (1993) also studied the type of Quedius granulipennis; he found it to be a junior subjective synonym of Q. fuliginosus.

Quedius latus was described from "Alagez-Gebirge" (Hochhuth 1851), the Aragatz mountain area in Armenia and has never been recorded since the original description. Based on the rather extensive faunistic knowledge of the Caucasus region, Q. latus could either be conspecific to Q. fuliginosus or Q. curtipennis, both common in the area (Assing \& Schülke 2019) and both fitting the original description of Q. latus. Since no type or any other authentic material of Q. latus was found in Hochhuth's collection in Kyiv, Ukraine (S. Glotov, pers. comm.), apparently it is lost. To secure current and future stability of the name Quedius latus Hochhuth, 1851, in accordance with the ICZN, Article 75, we designate its neotype. For this, a male specimen of Q. fuliginosus collected in the vicinity of the original type locality (for details see Type Material section above) has been selected. The neotype fits the original description of Q. latus and thus allows us to consider the so far dubious name Quedius latus Hochhuth, 1851 syn. nov. as a junior subjective synonym of Quedius fuliginosus Gravenhorst, 1802.

The specimen we studied from the syntype series of Quedius molochinicolor Roubal, 1931 represents Quedius fuliginosus with slightly brownish elytra, thus confirming the currently accepted synonymy.

Britten (1944) recognized that there were two closely related species of Quedius s.str. in Britain. Based on his descriptions and illustration, it is clear that Q. fuliginosus sensu Britten is Q. curtipennis while the new species he described, Q. subfuliginosus, is identical to Q.fuliginosus. This is in agreement with the currently accepted synonymy.

We were not able to check the types of Quedius impunctifrons Delahon, 1915 and Quedius jelineki Krása, 1904 from Germany and Czech Republic, respectively. Both names are currently in synonymy with Q. fuliginosus. Since the descriptions state that they lack the interocular punctures on frons characteristic of the Q.fuliginosus-group, they either represent variability in chaetotaxy - or more likely, they are dark variants of Q. molochinus, the latter possibility calling for a revised synonymy.

SAWADA (1965) described Q. viduus as being very similar to Q. fuliginosus, but different in the broader head, larger and more convex eyes, pronotum with lateral sides
less convergent anteriorly, broader elytra, and rougher punctation of abdomen. This original description based on the single female specimen is the only record of Quedius s. str. from Japan. In spite of the thorough searches in the collections of National Museum of Nature and Science, Tokyo (Shuhei Nomura), Osaka Museum of Natural History, Osaka (Shigehiko Shiyake), Nakane Collection at Hokkaido University (Masahiro Ohara), and Sawada personal collection (Yasuhiko Hayashi), all performed by respective curators upon our request, the holotype of Q. viduus could not be located. Based on the original description and lack of any other species of Quedius s. str. in Japan, we suspect this is either a mislabeled specimen not from Japan, or an introduced specimen of Q. fuliginosus, which was not established or recollected in Japan. Thus, Q. viduus Sawada, 1965 syn. nov. is considered as a junior subjective synonym of Q. fuliginosus Gravenhorst, 1802.
Bionomics. Quedius fuliginosus is widespread and eurytopic species found in a variety of forests (both deciduous and coniferous) and in the open habitats too. Usually, it occurs in moss and leaf litter or in various other kinds of ground debris (Solodovnikov 2012). We have commonly collected this species in moss near the edge of a lake in Denmark (Fig. 2A), in various forests often with dense fern or grassy undergrowth, across larger parts of Western Siberia (Fig. 2E), in flood debris of a forested mountain stream in Triglav, Slovenia and along river forested on either side in the southern Czech Republic. It seems to prefer mossy patches and moist litter, and is thus to some degree often associated with water bodies, although it is not found at the very edge of these. It has also been reported from mole (Talpa europaea) nests (Nowosad 1990), from bracket fungi (Polyporus squamosus) (Semenov et al. 2015), and from ant nests (GoresLavets 2010, 2016), all of which are presumably accidental occurrences, as there is no indication of the species preferring these habitats.

Larvae were described by Paulian (1941), Ротоtskaya (1967) and Kasule (1970). Pupae of the species are described in Staniec (1999); Szujecki (1966) described the egg. Adult females from Wytham, UK were observed containing eggs between May and June (Frank 1969).
Distribution. Quedius fuliginosus can be found across a large part of the Palearctic region (Fig. 18). In Europe it is common in the North-East, but becomes rarer south--westwards and is probably absent from the southern parts of the Iberian Peninsula and Italy. It is found across most of Siberia from the Urals to at least the Baikal region. In the southern part of the range the species is confined to the forested zone in mountains. Here it is found along the Pyrenees, the Alps, the North Anatolian mountains, the Caucasus, and Transcaucasia. Eastwards it extends to the western forested regions of the Tian Shan Mountain Range in central Asia. The northern distributional border of the species seems to be determined by the forested boreal zone, as it does not continue into the tundra.

Records of Q. fuliginosus from Tunisia and Algeria (FAUVEL 1902) most likely refer to either Q. levicollis or Q. afrofuliginosus, as we did not come across any specimens of this species from northern Africa or nearby regions.

Moreover, Q. fuliginosus is apparently absent in the south Mediterreanean coastal areas, which makes its presence in North Africa even more unlikely.

Introduced to eastern North America in an area of Nova Scotia where the first specimens were found in 1996 (MajKa \& Smetana 2007) (Fig. 12).

Quedius levicollis (Brullé, 1832)

(Figs 1, 2B, 3, 6D, 7D, 11B, 19)
Staphylinus levicollis Brullé, 1832: 131 [Type locality: Morée: plaine de Modon]
Philonthus frontalis Nordmann, 1837: 76 [Type locality: Gallia; Symperopoli]
Quedius balthasari Mařan, 1935: 9 [Type locality: Knossos, Creta] Staphylinus nigritarsis Ménétriés, 1832: 144 [Type locality: Caucase]

References. Gravenhorst (1802): 34, (1847): 231 (characters); Stephens (1832): 215, (1839): 389 (characters); FALDERMANN (1835): 123 (characters); Lacordaire (1835): 376 (characters); Nordmann (1837): 75 (distribution); Holme (1837): 63 (distribution); Westwood (1838): 167 (larva and pupa); Erichson (1840): 537 (characters); Kolenati (1846): 22 (characters); Kiesenwetter (1848): 54 (characters); Hochhuth (1849): 154, (1862): 46 (characters); REDTENBACHER (1849): 709, (1857): 201, (1874): 198 (characters); Fairmaire \& Laboulbène (1856): 536 (characters); Rosenhauer (1856): 71 (distribution); Kraatz (1857): 502 (characters); Fairmaire \& CoQuerel (1860): 154 (distribution); Fauvel (1865): 293 (ecology); (1874): 289 (characters and distribution); (1878): 128, (1886): 58, (1902): 115 (distribution); Mulsant \& Rey (1876): 688 (characters); Fowler (1888): 237 (characters); Ganglbauer (1895): 403 (characters); Sainte-Claire Deville (1906): 102 (distribution); Porta (1907): 129 (characters); ReItTER (1909): 111 (characters); JOHANSEN (1914): 363 (characters); Munster (1923): 196 (distribution); Gridelli (1924): 80 (characters and distribution); Portevin (1929): 341 (characters); Wüsthoff (1938): fig. 22 (characters); Tottenham (1949): 376 (characters); Hardy (1851): 32 (distribution); HaNSEN (1952): 142 (characters); Scheerpeltz (1956): 1102, (1965a): 407, (1965b): 511 (distribution); (1961): 133 (characters); Smetana (1958): 362 (characters and ecology); (1962): 134 (characters and distribution); (1963): 39, (1967): 558, (1970): 62, (1993): 50 (distribution); (1978b): 121 (distribution and ecology); PaLM (1963): 141 (characters and distribution); LOHSE (1964): 211 (characters); Focarile (1964): 61 (distribution); Horion (1965): 273 (distribution); Coiffait (1970): 62 (distribution); (1978): 192 (characters and distribution); Bordoni (1976a): 93 (characters); (1982): 140 (ecology); (1984): 342 (distribution); Pope (1977): 31 (characters and distribution); Hinton (1981): 662 (characters of egg); TÓTH (1984): 118 (distribution); Franz (1987): 70 (distribution); Gusarov (1993): 73 (synonymy); Welch (1993): 229 (ovary structure); CICERONI \& ZANETTI (1995): 33 (distribution); NeWTON (1995): 51 (requested to ICZN to place Q. levicollis on the Official List of Specific Names in Zoology); ICZN (1996): 215 (Q. levicollis placed on Official List of Specific Names in Zoology); Bland \& Sinclair (1997): 204 (biology); Marchal \& Chardonnet (2000): 72 (distribution); Owen (2000): 252 (ecology); Assing \& Wunderle (2001): 37 (distribution); Uhlig et al. (2006): 54 (distribution); Tronquet (2006): 102 (distribution); Anlaş (2009): 229 (distribution); STAN (2009): 242 (distribution); Vorst et al. (2009): 16 (distribution); MAJZlan \& Boháč (2012): 182 (distribution); Bebermans et al. (2016): 135 (distribution); ÖzGEN et al. (2016): 620 (distribution); RUTA et al. (2016): 37 (distribution); SALNITSKA \& Solodovnikov (2019): 49 (distribution).

Type material examined. Staphylinus nigritarsis: Lectotype: designated by Gusarov (1993) (ZIN), labelled: "[golden square] / Caucas. / nigritarsis Menet. Cauc". Paralectotype: labelled: "[golden square] / Caucas." (1 ØZIN).
Additional material examined. ALBANIA: 13km SE Elbasan, Mali i Shpatit, Mt. Bukanikut, 41.0431, 20.2172, brook bank in beech forest, 1500m, 22.V.2010, leg. D.W. Wrase ($1 \AA$ cSch). BOSNIAAND HERZEGOVINA: Maklen-Pass, [43.85, 17.65], 1902, leg. O. Leonhard (1 SDEI); Prozor, [43.82, 17.61], 1902, leg. O. Leonhard (1 SDEI). BULGARIA: Arkutino, S of Burgas, [42.41, 27.65], 28.V-9.VI.1971, leg. Wallis (1 ${ }^{7}$ SDEI). CROATIA: Capela [Kapela], [44.89, 15.52], leg. Heyden (1

SDEI）；Velebit Mountains，［44．52，15．22］，wine traps，V． 2005 （1 đ cJen）． CYPRUS：Agios Nikolaios，［34．86，32．75］，16．IV．1995，leg．H．Schmid （ $1 \delta^{7}$ NMW）；Troodos Mountain，Stavros tis Psokas，［35．02，32．63］，800－ 950m，12．－18．IV．2010，leg．I．Wolf（ $1 \delta^{\top}$ cSch）．DENMARK：Ovestrup Hede，56．2412，8．9297，pitfall trap，heathland grazed part，7－22．VI．2017， leg．E．Kristensen，D．Byriel，\＆M．Justesen（ 1 NHMD）．FRANCE： Avignon，［43．94，4．81］，22．V．1949，leg．R．Skovgaard（1 § NHMD）； Chigny n．Oise，［49．91，3．76］，19．X．1918，leg．Salchert（1 \＆ZMHB）； Paris，［48．83，2．41］，19．V．1949，leg．R．Skovgaard（1 NHMD）．Corse： Bocognano，［42．08，9．06］，1905，leg．O．Leonhard（1 SDEI）；Col de Bavella， ［41．79，9．23］，1240m，East slope，25．VII． 1994 leg．L．Zerche（1 § SDEI）； Foret de Valdo－Niello，Evisa，［42．28，8．91］，1000－1200 m，27．VII．1967， leg．Langemark－Lomholdt（ $1 \delta^{\top}$ NHMD）．GERMANY：Berlin－Marzahn， Hellersdorfer Berg，［52．53，13．58］，8．VIII．1997，leg．Hieke（1 q ZMHB）； Berlin，Prenzlauerberg Hof，［52．53，13．46］，29．V．1985，leg．I．Uhlig（1 ठ̉ ZMHB）；Grunewald n．Zehlendorf，［52．48，13．22］，leg．Wagner（1 SDEI）． GREECE：Attica，［38．05，23．84］，17．IV．1922，leg．W．Liebmann（1 SDEI）；Paleokastro，Halkidiki，［40．43，23．42］，800m，11．VII．1983，leg．A． Casale（1 \uparrow cBor）； 2 km W Panagia，Trikala，［39．79，21．33］，15．VI．1982， leg．R Danielsson（ 1 § MZLU）；Voria Pindos，Morfi，［40．21，21．21］，dry slope，26．VI．1997，leg．Winkelmann（ $1 \not q$ cSch）；Corfu：Pandokratoras， 39．7492，19．8701，N－slope with scattered pine，decidious trees，and bushes， litter and roots between rocks sifted， $800 \mathrm{~m}, 4 . \mathrm{VI} .2017$ ，leg．Schülke（ $1 \delta^{\pi}$ cSch）；Pantokrator，［39．74，19．87］，V．1964，leg．Palm（1 \uparrow MZLU）．Crete： Georgioupouli，［35．36，24．26］，24．－25．IV．1995，leg．B．Jaeger（1 q cSch）； Ida mts．，ca． 6 km S Analipsis， 35.1752 ，24．8391，Quercus forest，1260m， 21．X．2006，leg．M．Schülke（1 cSch）；Mt．Ida，28km SW Iraklio，［35．23， 24．77］，1600m，7．IX．1991，leg．N．Esser（1 q NHMD）．Karpathos：Kar－ pathos， $35.5097,27.2189,40 \mathrm{~m}$ ，terracod grassy fallow，01．I．2016，leg．V． Assing（ZMHB）．Lesbos：SW Agiassos，road to Olympos peak，［39．06， 26．36］， $700 \mathrm{~m}, 10 . \mathrm{VI} .1996$ ，leg．Jäch（ 1 § 1 ¢ NMW）．Peloponnes： Korinthia，Kyllini，Zoria，［37．94，22．43］， 2000 m，3．VI．1995，leg．Giachi－ no \＆Vailati（1 § 3 q q cBor）；Kyllini Mountain，［37．97，22．39］，2100m， North side，below summit over valley，9．VI．1996，leg．P．Wunderle（1 q cSch）；Sparta，［37．06，22．43］，3．V．1962，leg．Skovgaard（1 § NHMD）； N Taygetos， 6 km NE Thouria，37．1401，22．1284，litter and soil under bushes，sifted， $584 \mathrm{~m}, 20 . \mathrm{IV} .2015$ ，leg．M．Schülke（ $1+\mathrm{cSch}$ ）．Rhodes： Prophitis Ilias，36．2734，27．9287，pine forest，under stones \＆sifted from litter \＆moss，685m，17．V．2015，leg．Wrase \＆Laser（ 1 ゐ cSch）．IRAN： Kohgiluyech－Va－Boyern－Ahmad province， 20 km SW Yasuk， 10 km SE Sepidor，［30．56，51．51］，5．－6．V．2007，leg．A．Anistchschenko（1 q SDEI）． IRELAND：Inch Dingle Eire，［52．14，－9．97］，IX．2012，leg．J．J．Shaw（1 ठ cJen）；Pembury，Kent 51．1625，0．3431，24．VII．2011，leg．J．J．Shaw（2 〇̂ठ cJen）．ISRAEL：Upper Galilee，Har Avivim，W Avivim，33．0833，35．4923， open stony grazing land limestone， $768 \mathrm{~m}, 21 . \mathrm{IV} .2006$ ，leg．D．W．Wrase（1 $\widehat{\delta}^{1}$ cSch）；Upper Galilee，Meron Mts．Har Meron，Kamin Rom，32．9908， 35．4111，open stony grazing land，limestone， $1100 \mathrm{~m}, 28 . \mathrm{IV} .2006$ ，leg．D．W． Wrase（ $1 \precsim \mathrm{cSch}$ ）．ITALY：Calabria Aspromonte，［38．21，15．99］，1905，leg． Pagametti（1 SDEI）；Calabria，Roseto Capo Spulico，［39．98，16．61］， 20 m ， 6．X． 1998 leg．F．Angelini（1 q NHMD）；Dicomano，Toscana，［43．89，11．52］， I．1971，leg Bordoni（1 đ cBor）；Macerata，［43．29，13．45］，1．X．1955，leg．D． Caccamicelo（ $1 q$ cBor）；Marche，Montemonaco，Isola San Biagio，［42．91， 13．31］，fields， $900 \mathrm{~m}, 27 . V I I .-1 . I X .2004$ ，leg．M．Rismondo \＆R．Fabbri（2 §す 2 个早 NHMD）；same locality，black hornbeam forest，1．IX．－7．X．2004， leg．M．Rismondo \＆R．Fabbri（ 1 § NHMD）；Modena，Prignano sulla Secchia，La Quercia，［44．45，10．73］，pitfall traps， $400 \mathrm{~m}, 5 .-18 . \mathrm{VII} .2006$ ， leg．R．Fabbri（ $1 \mathrm{~J}^{\mathrm{N}} \mathrm{NHD}$ ）；Reggio di Calabria，river Sant Agata，［38．09， 15．66］，11．III． 1959 （ 1 § cBor）；Settecamini，Rome，Lazio，［41．93，12．62］， 23．Xi． 1969 （ 1 § 1 q cBor）；Sovara，Anghiari，［43．53，12．03］，19．V．1930， leg．A．Andreini（ $1 \not \subset$ cBor）．Sardinia：Aritzo Mountain，Gennargentu， ［40．01，9．29］，leg．C．Kruger（2 SDEI）；Ottana，［40．23，9．04］，15．X．1974（3〇ิ 1 q cBor）；Oristano，［39．89，8．59］，3．V．1975，leg．S．Ripze（ 2 qq cBor）； Sicily：Ficuzza，［37．85，13．38］，1906，leg．O．Leonhard（1 SDEI）；Messina， ［38．18，15．54］，leg．Schiödte（ 4 q q NHMD）．MOROCCO：Ain Leuh， ［33．28，－5．33］，17．V．1925，leg．M．Escalera（1 đ 4 우 MNCN）；Ar Rif， Chefchaounen reg．，env．Bad Bessen，34．9913，－4．8555， 1124 m，3．VI．2007， leg．P．Hlaváč（ 1 §cSch）；Ar Rif，Chefchaounen region，rd．Bad Berret－ Bad Bessen， 1392 m，35．0169，－4．0035，3．－6．VI．2007，leg．P．Hlaváč（1 q cSch）；Taza，［34．22，－4．00］，leg．F．Schubert（1 q NMW）．PORTUGAL： Penedo da Meditação，Coimbra，［40．224371，－8．40］，24．IV．1961，leg．R．N． F．（1 $\widehat{\imath}$ NMW）．Madeira：Faja da Nogueira，［32．74，－16．90］，laurisilva
 3 우 NHMD）；Paul da Serra，［32．73，－17．05］，27．XII．1987，leg．Gillerfors （ $1 \bigcirc$ MZLU）．SPAIN：Castanos de Calabazas， 1 km S Castanar de Ibor， Extemadura， $39.6235,-5.4128,860 \mathrm{~m}$ ，sifted mossy rock scree litter， chestnut and oak forest／w rock screes and small stream，10．V．2019，leg．A． K．Hansen，J．J．Shaw，\＆J．Kypke（NHMD）；Cavarrubias［Covarrubias］， Burgos，［42．05，－3．51］，10．XI．1995，leg．A．Anichtchenko（1 ch Cha）；Lloret de Mar，［41．69，2．83］，17．IX．－6．X．1961，leg．Palm（1 \gtrsim MZLU）；Sierra de Ancares，A Degrada vill．，［42．81，－6．87］，1100－1250 m，8．－9．VII．1996，leg． Wrase（ 2 § cSch ）；Sierra de Guadarrama，Navacerrada，Arroyo de Peca ［Peña］Cabrita，［40．77，－3．99］， 1800 m，5．IX．2001，leg．A．Anichtchenko（1 ${ }^{7}$ NHMD）；Sierra Nevada，rio Lanjaron，Tello，［36．92，－3．47］， 1500 m，29．－ 31．III．2010，leg．Shavrin \＆Anichtchenko（1 NHMD）；Toledo，El Pielago Navamorcruende，［40．15，－4．79］，4．VIII． 2005 leg．Lencina \＆Andujar（1 ZMHB）．SYRIA：Krak des Chevaliers，［34．75，36．29］， 600 m，7．V． 1982 （1 ठ 1 ¢ MCZ）；MashtalHelu［Mashta Al Hilu］，E of Safita，［34．87，36．26］， 30．IV．2008，leg．Skoupý（1 chch）；Zainie， 45 km NE of Latakia，［35．78， 36．19］，4．V．1982，leg．M．Dvorák（3 q q MCZ）．SWEDEN：Farö：Farön， ［57．94，19．14］（1 MZLU）．Gotska Sandön：Sandön，［58．36，19．24］（1 MZLU）．ÖLAND：Stenåsa，［56．51，16．59］（1 MZLU）．TURKEY：Amanos ［Nur Mountains］，［36．74，36．33］，24．V．1987，leg．Jäch（1 \uparrow NMW）；Bolu， ［40．72，31．61］，leg．F．Schubert（1 \odot NMW）；Çıkrıkçı，Turgutlu，［38．47， 27．81］，15．II．2006，leg．S．Anlaş（ $1{ }^{\imath}$ NHMD）；Çıkrıkçı，Turgutlu，［38．47， 27．81］，17．II．2006，leg．S．Anlaş（1 3 Oq NHMD）；Danin－Danin，Hakkari Prov，［37．44，42．86］， 2200 m，1．VI．1987，leg．Schönemann \＆Schillhammer （ 2 ふろ 7 ○ \uparrow NMW）；Izmir，Boz daglari，Boz dag köy env．，［38．34，27．75］， 1500－1700 m，30．V－3．VI．2003，leg．R．Lohaj（ 1 § 1 cSch）； 50 km N Antalya，［37．33，30．77］，18．IV． 2015 leg．Snizek（ $1 \uparrow$ NMEG）；Sogukoluk， Belen，Hatay，［36．49，36．14］，24．V．1987，leg．Schönemann \＆Schillhammer （1 \uparrow NMW）．UNITED KINGDOM：ScotLand：Bridge of Orchy，［56．51， －4．76］，23．VII．1987，leg．Gillerfors（ 1 ō 1 ¢ MZLU）；Hawock［55．42， －2．78］，VI．1964，leg．M．Paoletti（1 q NMW）．

Redescription．Measurements $\widehat{\widehat{o}}$（ $\mathrm{n}=6$ ）： $\mathrm{HW}=1.78-$ 1.87 （1．81）；HL＝1．47－1．56（1．51）；HL／HW 0．81－0．85 （0．83）；PW＝2．27－2．36（2．31）；PL＝2．22－2．24（2．23）； PL／PW 0．94－0．98（0．96）；EW $=2.60-2.69$（2．63）； $\mathrm{EL}=$ 2．49－2．60（2．54）；EL／EW 0．95－0．98（0．96）；EL／PL 1．12－ 1.16 （1．14）；PW／HW 1．49－1．58（1．53）；forebody length 6．20－6．33（6．28）．우（ $\mathrm{n}=4$ ）：HW＝1．80－1．87（1．84）； $\mathrm{HL}=1.49-1.56$（1．52）；HL／HW 0．81－0．86（0．83）； $\mathrm{PW}=$ 2．38－2．51（2．44）；PL＝2．27－2．36（2．31）；PL／PW 0．94－0．95 （0．95）； $\mathrm{EW}=2.73-2.89$（2．82）； $\mathrm{EL}=2.58-2.69$（2．64）； EL／EW 0．92－0．97（0．94）；EL／PL 1．09－1．17（1．14）；PW／ HW 1．53－1．69（1．61）；forebody length 6．42－6．56（6．47）． Very large species；body black（Fig．7D）．
Head black，slightly transverse，with eyes large（EyL／TL $=3.64-4.78$（4．22））following contour of head；microsculp－ ture of transverse waves， 4 to 6 punctures between anterior frontal punctures on frons（Fig．6D）；antennae pale reddish， long，all antennomeres clearly elongate；palpi pale reddish．

Thorax：pronotum black，almost quadrate，as wide as long，clearly wider than head，microsculpture of tran－ sverse waves，three punctures in dorsal row and three in sublateral row with the most posterior one reaching the level of third puncture of dorsal row；scutellum pun－ ctured and setiferous，elytra black，densely punctured and pubescent，slightly wider than long，slightly longer than pronotum；legs dark brown with inner face of tibia darkened and tarsi paler．

Abdomen black，tergites uniformly punctured，slightly iridescent．

Male．Aedeagus（Fig．11B）：Paramere slender，lance－ olate，reaching apex of median lobe，sensory peg setae forming two clear rows；median lobe with protrusion at
apices and two small but distinct teeth near lower level of parameres peg setae; internal sac with two small distal medial sclerites.
Differential diagnosis. Quedius levicollis is easily distinguished from other members of the fuliginosus-group by the punctured and setiferous scutellum and three punctures in the sublateral row of pronotum with the posteriormost one reaching the level of the third (basalmost) puncture of the dorsal row. It can be additionally distinguished from Q. fuliginosus by the pale antennae, and from Q. curtipennis by the slender paramere and median lobe with apical protrusion. Quedius levicollis is mainly found in drier habitats and rarely co-occurs with any of the other species in the species group. Synonymic notes. The name Quedius tristis (Gravenhorst, 1802) has long been applied to this species. Gravenhorst (1802) did not describe Staphylinus tristis as a new species but attributed it to Fabricius. The Fabrician species is now in Ocypus (Pseudocypus). Newton (1995) made an appeal to the International Commission of Zoological Nomenclature requesting that the species takes the name Quedius levicollis, as this was the next available name associated with this species. As a result, Quedius levicollis (Brullé, 1832) was accepted on the Official List of Specific Names in Zoology (ICZN 1996: 215).

Bernhauer \& Schubert (1916) placed Staphylinus nigritarsis Ménétriés, 1832 in synonymy to Philonthus splendens. Gusarov (1993) revised the type series of S. nigritarsis and designated a lectotype. He found S. nigritarsis to be conspecific with Q. levicollis (Brullé, 1832) based on both external characters and the shape of the aedeagus. We confirm Gusarov's identification through examination of photos of the type from ZIN provided by M. Salnitska (see supplementary Fig. S1).

We were not able to examine the types of Philonthus frontalis Nordmann, 1837 and Quedius balthasari Mařan, 1935, both currently accepted synonyms of Q. levicollis.

Based on the original descriptions, both synonymies appear to be correct. Philonthus frontalis was described from Italy and Greece and fits the description of Q. levicollis, with interorbital punctures and punctate scutellum. Quedius balthasari Mařan, 1935, described from central Crete as a species different from Q. levicollis in sparser punctation and reddish margins of elytra is likely a color aberration because Q. levicollis is also known from Crete.

Bionomics. Quedius levicollis is a clearly thermophilous eurytopic species, which prefers sandy soils and is found in both open habitats and dry forests. It occurs in various ground debris and under rocks, e.g., it has been found in forest litter at different elevations (200-1900 m) in Cyprus (Assing \& Wunderle 2001), under rocks in Corse (Marchal \& Chardonnet 2000), and from sifted wet leaf-litter under oleander trees, at $500-1100 \mathrm{~m}$ in Israel (Smetana 1978b). We have encountered this species under rocks in open oak and chestnut forest in Spain (Fig. 2B), and between the roots of Erica in a heathland in Denmark. It has been recorded from caves in Sardinia (Bordoni 1982), although this most likely represents an accidental occurrence.

Welsh (1993) found this species to contain six ovaries with a fasciculata type of structure.
Distribution. Quedius levicollis is widely distributed across the Western Palearctic from the Atlantic coast, including British Islands through the Mediterranean, including North Africa, in the west to the Russian Black Sea coast and the Middle East (Fig. 19). In the Middle East the species extends into the Levant region, but not into the Nile delta. The south-easternmost record of Q. levicollis is from South Iran. The species is found on all major Mediterranean islands, including Cyprus, Crete, Corse and Sardinia, as well on the island of Madeira in the Atlantic Ocean. It is most common in the southern part of its distribution range gradually becoming rarer towards the north-east where it

Fig. 12. Distribution of Eurasian species introduced to North America: Quedius curtipennis Bernhauer, 1908 (teal), Q. fuliginosus (Gravenhorst, 1802) (green), and Q. molochinus (Gravenhorst, 1806) (orange).
occurs at xerothermic sites reaching its northernmost limit on the Swedish island of Gotland in the Baltic Sea.

Quedius molochinus-group

Diagnosis. Species of medium size. Coloration variable from completely dark to dark with brown, reddish, or yellowish pale elytra and appendages. Eyes smaller, temples larger, with temporal puncture separated from posterior margin of eye by a distance equal to the diameter of the puncture. Frons without interocular punctures (cf. Fig. 6F). Scutellum punctate and pubescent. Pronotum without puncture(s) in the posterior part of sublateral row. Palearctic; Q. molochinus introduced to North America.
Comments. The Quedius molochinus-group is composed of four species (Q. molochinus, Q. meridiocarpathicus, Q. vicinus, and Q. balticus) that usually have red elytra, although some variants have them darkened. All of these are distributed within the Palearctic Region - although Q. molochinus has been introduced to the Nearctic (Smetana 1981). Among others of the subgenus, these species are characterized by usually having reddish-brown to orange elytra, frons without interocular punctures, scutellum punctate and pubescent, and sublateral rows on pronotum without punctures on the posterior half (Fig. 8). The species are externally very similar and have been confused for a long time, rendering their real distributions unknown. They have also been confused with the red elytral species of the Q. pallipes-group, from which they are distinguished by sublateral rows on pronotum without punctures in posterior half. Thorough investigation of representative material here demonstrates that Q. molochinus, Q. meridiocarpathicus and Q. vicinus are almost entirely allopatric (Fig. 20). Quedius molochinus is a more northern species, distributed in Europe from the UK and European Russia to the Alps and the Czech Republic, in Asia it is widespread from the Urals to Transbaikalia. In southern Europe it is replaced by Q. meridiocarpathicus, which is found in the Italian and Balkan peninsulas and continuing eastwards through Hungary to the Black Sea coast of Ukraine and Russia. Quedius vicinus is confined to Eastern Transcaucasia along the Caspian Sea, southeastern Anatolia, and the northern Middle East across to central Asia. The only overlap is in Anatolia where both Q. meridiocarpathicus and Q. vicinus can co-occur. In this area the species can be most easily distinguished by differences in male genitalia (Fig. 13). Another minor difference includes the antennal coloration, where the middle antennomeres (from fourth to sixth) are slightly lighter in Q. vicinus compared to Q. meridiocarpathicus (Fig. 8). Quedius meridiocarpathicus in turn has slightly lighter middle antennomeres as compared to Q. molochinus (Fig. 8). All three species are found in similar habitats, mainly in various types of moist litter or under rocks either near creeks and rivers or in forests. Quedius balticus is found across a large part of the Palearctic and thus has an overlapping distribution with the other three species in parts of their ranges (Fig. 19). Unlike the three former species, Q. balticus is almost exclusively found in bogs and on floodplains, to which it is highly adapted. Also, it is externally easy to recognize based on the darkened
basal three antennomeres, which are pale in the three other species (Fig. 8). If there is any doubt in external characters, these four species in the Q. molochinus-group can most easily be identified through differences in male genitalia (see descriptions).

Quedius balticus Korge, 1960

(Figs 1, 4, 8E, 13E, 19)
Quedius balticus Korge, 1960a: 52 [Type locality: Südspitze der Insel Hiddensee bei Rügen]

References. Last (1952): 148 (characters; cited as Q. molochinus, but misidentified according to Korge 1960a); (1963): 43 (characters); Korge (1960a): 67 (characters and notes); (1963): 87 (biology); CoIFFAIT (1961): 50 (characters); (1978): 192 (characters, distribution and biology); Smetana (1962): 135 (characters); Hansen (1962): 319 (characters); Palm (1963a): 160, (1963b): 117 (characters); LOHSE (1964): 212 (characters); Horion (1965): 277 (distribution); SzuJecki (1966): 36 (distribution); POPE (1977): 31 (distribution); То́тн (1984): 119 (characters); LuCHT (1987): 109 (distribution); Gusarov (1989): 12 (distribution); Janák (1992): 91 (distribution); Smetana (1993): 50 (distribution); Hyman (1994): 194 (distribution); Hodge \& Jones (1995): 41 (characters); Moravec \& VoničKa (2000): 39 (distribution and biology); Jelínek (2001): 200 (distribution); KOMOSIŃSKi (2001): 19 (distribution); FÜLÖP (2005): 144 (distribution); UhlıG et al. (2006): 41 (distribution); NASH (2009): 23 (distribution and biology); CUPPEN et al. (2011): 12 (distribution); MonsevičIus (2013): 27 (distribution); MAJZLAN \& Litavský (2017): 19 (distribution and biology); Hoffmann et al. (2018): 199 (biology).
Material examined. AUSTRIA: Purbach, Burgenland, [47.90, 16.70], 6.VIII.1985, leg. V. Kovits (1 NMW). BULGARIA: Sozopol, Black Sea coast, [42.42, 27.68], 16.VI.1972, leg. M. Uhlig (1 ठ ZMHB). CZECH REPUBLIC: Poděbrady, [50.13, 15.12], 3.IX. 1936 (1 đ NHMD). DENMARK: Bognæs Skov på Tuse Næs, 55.7511, 11.7695, sifted from sea debris on saline marsh, 30.XII.2013, leg. K.B. Nielsen (1
 Sundby Storeskov, [54.78, 11.81], 29.VII.1962, leg. V. Hansen (9 ôd 2 ¢ \odot NHMD); Vålse Vesterskov, 54.9592, 11.7728, sifted from fresh sea debris on saline marsh, 7.XII. 2013 leg. K.B. Nielsen ($1 \not+$ NHMD). FINLAND: Kiiminki, [65.13, 25.78], 2011, leg. M. Mutanen ($1 \not \subset$ ZMUO). GERMANY: Degensmoor, Wesenberg, [53.27, 13.03], 31.VII.1978, leg. Stöcke (1 Q ZMHB); Döbitzer Heide, Ferbitzer Bruch, [52.50, 13.01] (1 § 1 q ZMHB); Federsee, Württenberg, [48.08, 9.62], 28.VII. 1977 (2 q q ZMHB); Korswandt n. Wolgast, [53.92, 14.16], 25.VIII.1989, leg. Klee$\operatorname{berg}\left(1 \delta^{\top} 1 q\right.$ NMW); Lübars, Berlin, [52.62, 13.36], 14.VII.1969, leg. H. Korge (3 od 4 우 ZMHB); Müritz, Waren, [53.44, 12.74], sifting, spaghnum with grass and leaf litter, 17.VI.1976, leg. M. Uhlig (2 õ ZMHB); Teufelbruch n. Spandau, [52.57, 13.21], 22.VIII. 1964 (1 ỏ ZMHB). HUNGARY: Pest nr. Mariabesnyö, [47.61, 19.41], 23.VIII.1931, leg. J. Fodor (1 q NHMD); Pest nr. Pécel, [47.49, 19.34], IX. -XI. 1929 leg. J. Fodor (1 § NHMD). ITALY: Zeccone n. Pavia, [45.26, 9.19], 17.X.1977, leg. P. Kanaar (1 đ ZMHB). KAZAKHSTAN: Karatal river, [45.41, 77.81], 1.VII.2004, leg. V.A. Kastcheev (2 đ̋ ZIN); Kyrgyz Alatau, Koshirme konezanod, [43.04, 76.84], 9.VII.2010, leg. V.A. Kastcheev (2 ふô ZIN). NORTH MACEDONIA: Ohrid Lake, n. Struga, [41.17, 20.66], 7.VI.1980, leg. F. Hieke (1 § 2 of ZMHB). SWEDEN: Arlöv, [55.64, 13.05], grass roots on mossy soil near sea, 3.X.1962, leg. Palm (1 đ MZLU); Fotevik, [55.45, 12.95] (1 MZLU). UKRAINE: Peter \& Paul, VII.-VIII., leg. A. Spaney (1 đ̄ ZMHB).

Redescription. Measurements $\widehat{\text { § }}$ ($\mathrm{n}=5$): $\mathrm{HW}=1.64-$ 1.78 (1.68); HL = 1.38-1.47 (1.41); HL/HW 0.81-0.88 (0.84); $\mathrm{PW}=2.13-2.38$ (2.22); $\mathrm{PL}=1.98-2.00$ (1.98); PL/PW 0.84-0.93 (0.89); EW = 2.11-2.40 (2.21); $\mathrm{EL}=$ 1.91-2.27 (2.07); EL/EW 0.88-0.96 (0.93); EL/PL 0.971.13 (1.04); PW/HW 1.48-1.65 (1.57); forebody length 5.36-5.71 (5.46). 아 $(\mathrm{n}=5)$: $\mathrm{HW}=1.62-1.71$ (1.66); $\mathrm{HL}=1.33-1.44$ (1.40); HL/HW 0.82-0.87 (0.84); $\mathrm{PW}=$

Fig. 13. Aedeagus of Quedius s. str. A - Q. vicinus (Ménétriés, 1832); B - Q. sundukovi Smetana, 2003; C - Q. subunicolor Korge, 1961; D - Q. molochinus (Gravenhorst, 1806); E - Q. balticus Korge, 1960; F - Q. meridiocarpathicus Smetana, 1958. I - parameral view of whole aedeagus; II - apices of paramere in antiparameral view with peg setae; III - lateral view of whole aedeagus; IV - apices of median lobe in parameral view.
2.00-2.22 (2.13); PL=1.78-2.00 (1.88); PL/PW 0.86-0.90 (0.89); $\mathrm{EW}=2.13-2.24$ (2.20); $\mathrm{EL}=2.02-2.18$ (2.08); EL/EW 0.90-0.98 (0.94); EL/PL 1.01-1.15 (1.10); PW/ HW 1.29-1.56 (1.47); forebody length 5.18-5.51 (5.36).

Medium sized, robust species; body dark brown to black (Fig. 8E).

Head black, distinctly transverse, with eyes medium sized (EyL/TL $=2.00-2.27$ (2.14)); microsculpture of transverse waves; no interocular punctures between anterior frontal punctures (cf. Fig. 6F); antennae pale reddish with base of antennomeres 1-3 clearly darkened, all antennomeres elongate; palpi pale reddish.

Thorax: pronotum dark brown to black, slightly wider than long, wider than head, with microsculpture of transverse waves; three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching just beyond the first puncture of dorsal row; scutellum punctured and pubescent; elytra most often reddish brown rarely fully darkened, uniformly pubescent, with punctures clearly separated, slightly wider than long, roughly as long as pronotum; legs reddish brown with inner face of tibia and femur darkened, tarsi paler.

Abdomen dark brown to black, tergites uniformly punctured, without clear iridescence.

Male. Aedeagus (Fig. 13E): paramere rather broad, with clear medial expansion and extending into a point at apex, reaching just beyond apex of median lobe, with sensory peg setae forming two short broad rows fusing together towards apex, in lateral view peg setae are easily seen on protruding medial part of parameral apex; median lobe broad with sudden constriction to a point at apex, on parameral side with two well-defined teeth directed almost medially, positioned at level near end of peg setae rows of paramere; internal sac without extension of the C-sclerite.
Differential diagnosis. Quedius balticus is very similar to Q. molochinus, Q. meridiocarpathicus and Q. vicinus, but can be distinguished by the antennomeres $1-3$ being at least partially darkened. For confident identification genitalia should be examined, especially when specimens are teneral or faded (from old collections) and thus with unnatural coloration. The aedeagus of Q. balticus differs from Q. molochinus in the absence of an extension of the C -sclerite in the internal sac , in the broad median lobe suddenly constricted at tip and in the medial broadening of paramere. It can be distinguished most easily from Q. meridiocarpathicus by the shape of the paramere, which is medially broadened in Q. balticus and broadened towards apex in Q. meridiocarpathicus. Quedius balticus can be confused with Q. picipes from the subgenus Raphirus, which may occur in similar environments. It can be readily distinguished from the latter by the labrum being entire, the darkened base of antennomeres $1-3$ and the abdomen being more parallel-sided.
Color variation. Quedius balticus var. funebris Coiffait, 1971 was described from a female specimen from 'Sarthe, La Ferté-Bernard' as a variant of Q. balticus with black elytra (Coiffait 1971). Based on the images of that specimen kindly made on our request by Vinicius Ferreira at the MNHP, it is Q. molochinus with dark elytra. According to the ICZN Article 45.6 Quedius funebris is unavailable name.

Quedius picipennis ab. nigribasis Korge, 1960, another unavailable name, was described from a female from Germany ("Sweertia Weise Bin Lübais") and characterized by darkened antennomeres. So far, the form has been considered a color form of Q. molochinus (e.g., Herman 2001), but we are inclined to believe that this is indeed Q. balticus. At the time of description H. Korge considered Q. balticus restricted to an area near the Baltic Sea, but it is now known that the species is much more widespread.
Bionomics. Quedius balticus was originally considered a littoral species found only in sea debris (Korge 1960a, Hansen 1962) and litter washed up on beaches (Palm 1963). Later it was discovered in reed litter in swamps, moors, wet meadows, as well as riverine areas subject to flooding (Korge 1963, Moravec \& VoničKa 2000, Nash 2009, Majzlan \& Litavský 2017). Based on the earlier published data and our observations, Q. balticus is not common.

Korge (1963) noted that specimens, which he kept in a terrarium were hiding in wet meadow litter and could not even be expelled from it by flooding. While other beetles, including closely related representatives of the same genus, quickly moved out when debris were flooded, Q. balticus stayed behind. In a study conducted in a valley of the river Peene in NE Germany, Hoffmann et. al (2018) found Q. balticus to live only near natural fens and be the strongest indicator of these natural habitats. Given these observations the species seems to be highly adapted to environments subject to flooding and it can be a good indicator of a natural hydrology of an area.
Distribution. Quedius balticus is currently known to occur across large parts of Europe except the Iberian and the Italian peninsulas (Fig. 19). The species is currently known from Southern Finland and Sweden in the north to Italy, Bulgaria and Macedonia in the south, and from the British Isles and Northern France in the west to Kazakhstan in the east. Newly studied material herein extends the range north- and southwards, from Finland to Italy and Macedonia.

Quedius meridiocarpathicus Smetana, 1958

(Figs 1, 2C, 4, 8B, 13F, 20)
Quedius meridiocarpathicus Smetana, 1958: 365 [Type locality: Slovensko, Kamenný Most, Slanec]
Quedius dalmatinus Korge, 1960b: 68 [Type locality: Dalmatia: Castelnuovo]
References. Coiffait (1961): 53 (characters); Korge (1962): 153 (synonymy of Q. dalmatinus); Smetana (1962): 138 (characters); Lohse (1964): 212 (characters); Horion (1965): 277 (distribution); Smetana (1967): 558 (distribution); Bordoni (1976): 99 (characters); Coiffait (1978): 195 (characters); То́тн (1984): 129 (characters); Smetana (1993): 50 (distribution); Ciceroni \& Zanetti (1995): 32 (distribution); LÁszLÓ (1998): 137 (distribution); ANLAŞ (2009): 230 (distribution); Solodovnikov (2012): 33 (distribution); Petrenko (2015): 80 (distribution); Salnitska \& Solodovnikov (2019): 49 (characters and distribution).
Type material examined. Quedius meridiocarpathicus: Lectotype § (cSme), designated by Solodovnikov (2012), labelled: "Slovakia mer. Kamen. Most 5.5.1955 Smetana 1955 / Quedius meridiocarpathicus s. Smetana det. 1957 / Lectotype Quedius meridiocarpathicus Smetana A. Solodovnikov des. 2009 / Quedius meridiocarpathicus Smetana A. Solodovnikov det. 2009".

Paralectotypes： 1 §，labelled：＂Slovakia mer．Kamen．most 3．5．1955 Smetana／Quedius meridiocarpathicus Smetana det． 1957 ／Quedius meridiocarpathicus A．Solodovnikov det． 2009 ／PARALECTOTYPE Quedius meridiocarpathicus Smetana A．Solodovnikov des． 2009 ／NHMD 00523118 ＂（NHMD）； 1 ，labelled：＂Slovakia mer．Kamen．most 3．5．1955 Smetana／Quedius meridiocarpathicus Smetana det． 1957 ／Quedius meridiocarpathicus A．Solodovnikov det． 2009 ／PARALECTOTYPE Quedius meridiocarpathicus Smetana A．Solodovnikov des．2009／NHMD $00523117^{\prime \prime}$ ．
Additional material examined．ALBANIA：Kolonjë， 3 km ENE Leskovik，40．1586，20．6216，flooded pasture， $990 \mathrm{~m}, 28 . \mathrm{V} .2010$ ，M． Schülke（ $1 \AA \mathrm{cSch}$ ）．BOSNIA AND HERZEGOVINA：Jajce，［44．34， 17．27］，12．－23．VI．1967，leg．Baderle（1 3 $\}$ ¢ NMW）；Trebinje，［42．71， 18．35］， 1903 O．Leonhard（ $1 \uparrow$ SDEI）．BULGARIA：Burgas，Black Sea coast，［42．50，27．48］，8．－19．V．1985，leg．D．W．Wrase（1 ठ 5 q q ZMHB）；Kiten，［42．24，27．77］，29．V．1982，leg．H．Wendt（1 q ZMHB）； Melnik，［41．52，23．38］，12．－20．V．1981（2 \uparrow १ ZMHB）；Nessebar，［42．66， 27．71］，6．－7．VI．1982，leg．H．Wendt（ 1 万 2 q q ZMHB）；Pomorie，Black Sea coast，［42．58，27．62］，9．－18．V．1985，leg．D．W．Wrase（1 Ø cSch）； Primorsko，［42．26，27．75］，VII．1980，leg．I．Pokorný（1 q cSch）；Rupite， General Todorov，［41．43，23．24］，5．V．1984，leg．Hieke（1 q ZMHB）；nr． Sandanski，［41．55，23．23］，28．IV．1985，leg．B．Jaeger（1 ठ 1 q ZMHB）； Slivno，［42．67，26．32］（1 ठ NHMD）；Veliko Tarnovo，［43．08，25．63］， 25．VII．1984，leg．U．Opitz（ 2 o \uparrow ZMHB）．CROATIA：Castelnuovo ［Kaštel Novi］，［43．55，16．31］，1895，leg．F．Müller（1 q SDEI）；nr． Plitvice，［44．86，15．58］，19．VII．1910，leg．Hochetlinger（1 q NHMD）； nr．Zagreb，［45．78，15．98］（1 o^{\top} NMW）．GREECE：Alexandroupolis， ［40．85，25．87］，20．－30．IV．1967，leg．Krätschmer； 4 km NO of Anthili， Thessalia，Lamia，38．8655，22．5224，6．II．2015，leg．T．Wolsch（ 1 § cSch ）； Essymi［Aesymi］，［41．01，25．95］， $700 \mathrm{~m}, 25 . \mathrm{IV} .1978$ ，leg．Heinz（1 § 1 q ZMHB）；Ioannina，Metsovo，Lago O Pigon，［39．81，21．11］，18．V．2005， 1500m，leg．Angelini（ $2 \uparrow q$ NHMD）；Janina［Ioannina］，［39．66，20．85］， IV．1927，leg．C．Purkyne（ 2 § ${ }^{\lambda}$ NHMD）；Keramidi，Thessalia，Palamas， 39．5627，22．0801，5．II．2015，leg．T．Wolsch（ $1 \not q \mathrm{cSch}$ ）；Lavrio， 60 km S Athina，［37．71，24．06］，10．IV．1993，leg．P．Jørum（1 \uparrow NHMD）；Par－ nass．［Parnassos］，［38．53，22．62］（3 NHMD）；Skarfia， 20 km WSW Lamia， $38.8405,22.6988$ ，salt meadows，6．II．2015，leg．T．Mainda（1 $\widehat{\sigma}$ cSch）．Corfu：Val di Ropa，［38．24，21．73］，1905，leg．O．Leonhard （1 \uparrow SDEI）．Crete：Crete［35．41，24．75］，leg．Paganetti（ 1 § NMW） ［potentially mislabelled or introduced specimen clearly belonging to this species］．Kefalonia：Paranetti，［38．21，20．58］，leg．F．Müller（1 q SDEI）．Peloponnes： 3 km E Kalogria， 20 km NW of Varda，［38．19， 21．39］，15．IV．1993，leg．P．Jørum（1 q NHMD）；Nomos Lakonias，Near Fokiano， $37.0741,22.9676,0 \mathrm{~m}$ ，sifting，waters edge，stagnant water， salt marsh，02．IV．2019，leg．M．J．Justesen \＆A．K．Hansen（1 NHMD）． Zakynthos：Kalamaki，［37．74，20．89］，1909，leg．M．Hilf（ $1 \not \subset$ ZMHB）． HUNGARY：Hódmezővásárhely，［46．41，20．34］，16．－22．VI．1995，leg Probst（ 2 甲 \uparrow NMW）；Rapnitz［Rábca］river，Neusiedler See，［47．67， 16．81］，V． 1994 （1 ZMHB）；Velencei，Dinnyes，［47．17，18．54］，salt lake with gravel banks， $15 . V \mathrm{~V} .1979$ ，leg．M．Uhlig（ $1 才 1$ ZMHB）．ITALY： Albareto，Emilia，［44．53，10．40］，8．II．1994，leg．A．Fiori（2 q Q ZMHB）； NE of Bibione，left bank of Canale di Lugugnana mouth at Bibione， Veneto， $45.6259,12.9791$ ，sifting flood debris and litter，29．V．2016， leg．A．Solodovnikov \＆M．Salnitska（ 2 § 1 q NHMD）；Casinalbo， Emilia，［44．53，10．40］25．VII．1996，leg．A．Fiori（2 õ ZMHB）；Cascine Del Riccio，Riva Ema［43．73，11．25］，14．I．1970，leg．Mascagnia（1 ō cBor）；Comacchio，［44．69，12．17］，28．III．1974，leg．P．Garaghahi（2 q 早 cBor）；Firenzuola，［44．12，11．37］，VII．1970，leg．Mascagnia（1 Ə̄ cBor）； Lido di Jesolo，［45．51，12．62］，10．VIII．1962，leg．Salvato（ $1 \subset$ cBor）； Noghera Istria，［45．58，13．81］（1 JHMD）；Padova，［45．39，11．90］， IX． 1969 （1 đ ZMHB）；Roma，Portonaccio，［41．90，12．54］，IX．1937， leg．G．Sacca（1 4 ¢q cBor）；Tencarola，［45．39，11．80］，10．XII．1961， leg．Salvato（ $1 \subset$ cBor）．NORTH MACEDONIA：Bitola，Jugoslavia， ［41．02，21．32］，1962，leg．J．T．Skovgaard（1 \uparrow NHMD）；Katlanovo nr． Skopje，［41．89，21．68］，17．IX．－12．X．1966，leg．Gruber（ 1 ゐ 1 Q ZMHB）； Treska River，Sara，［41．97 21．30］，3．VI．1980，leg．F．Hieke（1 đ ZMHB）； Vardar River，n．Skopje，［41．98，21．49］，26．V．1980，leg．F．Hieke（1 ơ 3 Q Q ZMHB）．ROMANIA：Predeal，［45．49，25．57］，20．VI． 1977 （ $1 \uparrow$ MZLU）．RUSSIA：Krasnodar Krai： 15 km S of vill．Taman， ［45．21，36．70］，15．V．1995，sandy sea shore，under logs（ 2 §o NHMD）； Temruk，mud volcano Gefest，45．2566，37．4326，leaf litter in meadows，

12．VI．2017，leg．M．Salnitska（1 NHMD）Karabetova Gryada 5 km SE of vill．Taman，［45．12，36．76］，in litter at the bank of the permanent pond（1 \uparrow NHMD）；Mt．Tkhab，valley of river Zhene，［44．58，38．35］，in forest litter，21．VI．1992，leg．M．Savitsky（1 §HMD）．SLOVENIA： 9 km SE Piran，［45．48，13．59］，26．VI．1981，leg．F．Hieke（1 q ZMHB）． TURKEY：Adapazarı，［40．79，30．40］，flooding，15．VII．1965，leg．Korge \＆Heinz（1 đMHB）；SW Arnavutköy and Yassıören，［41．17，28．65］， 60 m，19．IV．1990，leg．Heinz（ 1 ZMHB）；Caykasi River，Erfelek，Sinop， ［41．89，34．92］，26．V．1989，leg．Schönmann \＆Schillhammer（1 §3 q q q NMW）； 6 km E Gebze，Izmit，［40．78，29．49］，IV．1983，leg．Heinz（1 § 2 우 ZMHB）； 20 km W Gebze，［40．87，29．22］，IV．1989，leg．Heinz（2 ふో 1 ¢ ZMHB）；Gelibolu，［40．41，26．67］， $10 \mathrm{~m}, 3 . \mathrm{V} .1982$ ，leg．Boffa （ 2 ¢q cBor）İnönü，Eskişehir，［39．82，30．14］， $850 \mathrm{~m}, 3 . \mathrm{IV} .1986$ ，leg． Heinz（1 \subset ZMHB）；Keşan，［40．85，26．62］，22．IV．1978，leg．Heinz（2 ふ̋ ZMHB）E Pamucak，Selcuk，［37．96，27．27］，swamp，28．III．1986， leg．Heinz（ 1 § ZMHB）； 2 km E Sarısaltık，39．1241，39．2475， 1594 m ， 19．V．2011，leg．Anlaş（ 1 q NHMD）；Saray， 30 km W Ankara，［40．07， 32．61］，23．II．1973，leg．Exp．Nat．Mus．Praha（1 đNHMD）；Söğüt，SE of Bilecik，［40．02，30．18］， 1200 m ，4．IV．1992，leg．Heinz（1 ठ 2 ¢ ㅇ ZMHB）；Susuz－Dag，Dokuz－Göl，Elmalı，［36．50，29．76］，1700－2000 m， 20．VII．1971，leg．Heinz（ 1 ZMHB）．UKRAINE：Environs Odessa， right bank of Kujalnitskij estuary，［46．57，30．73］，10．VI．2005，under sto－ nes，leg．A．Gontarenko（ $3 \hat{\delta} \widehat{o}^{\top} 1 q$ NHMD）；Nikitsky botanical garden， ［44．50，34．23］，by the sea，stones，16．IX．1966（1 $\delta^{\text {cheryv}) . ~}$

Redescription．Measurements $\widehat{\widehat{o}}(\mathrm{n}=7)$ ： $\mathrm{HW}=1.73-$ 1.82 （1．78）；HL＝ $1.47-1.56$（1．51）；HL／HW 0．82－0．88 （0．85）； $\mathrm{PW}=2.27-2.47$（2．36）； $\mathrm{PL}=2.09-2.31$（2．19）； PL／PW 0．89－0．95（0．93）；EW＝2．27－2．47（2．36）；EL ＝2．09－2．24（2．17）；EL／EW 0．87－0．99（0．92）；EL／PL 0．92－1．05（0．99）；PW／HW 1．50－1．66（1．56）；forebody length 5．71－6．02（5．86）．아 $(\mathrm{n}=3)$ ： $\mathrm{HW}=1.64-1.76$ （1．71）；HL＝1．33－1．51（1．43）；HL／HW 0．81－0．86（0．83）； $\mathrm{PW}=2.07-2.36$（2．21）； $\mathrm{PL}=1.96-2.13$（2．05）；PL／PW 0．91－0．95（0．93）；EW＝2．16－2．38（2．28）； $\mathrm{EL}=1.98-2.24$ （2．12）；EL／EW 0．90－0．97（0．93）；EL／PL 1．00－1．09（1．03）； PW／HW 1．52－1．56（1．54）；forebody length 5．27－5．78 （5．60）．

Medium sized，robust species；body light to dark brown （Fig．8B）．

Head black，distinctly transverse，with eyes medium sized（EyL／TL $=1.50-1.67$（1．56））；microsculpture of transverse waves；no interocular punctures between ante－ rior frontal punctures（cf．Fig．6F）；antennae pale reddish， antennomeres elongate；palpi pale reddish．

Thorax：pronotum light to dark brown，slightly wider than long，wider than head，with microsculpture of tran－ sverse waves；three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching just beyond the level of first puncture of dorsal row；scu－ tellum punctured and pubescent；elytra most often reddish brown rarely fully darkened，uniformly pubescent，slightly wider than long，roughly same length as pronotum；legs reddish brown with inner face of tibia darker．

Abdomen light to dark brown，tergites uniformly pun－ ctured，without clear iridescence．

Male．Aedeagus（Fig．13F）：paramere spatulate with clear proximal to medial attenuation and extending into paddle－like structure near apex，reaching just beyond apex of median lobe，with sensory peg setae forming a broad horseshoe shaped band of relatively large peg setae；median lobe broad with gentle constriction to a point at apex，on parameral side with two small teeth pointing slightly basad，
positioned at level near basal level of peg setae band of paramere; internal sac without a continuation of C-sclerite. Differential diagnosis. Quedius meridiocarpathicus is very similar to other species in the molochinus-group with red elytra, viz Q. molochinus, Q. balticus, and Q. vicinus. It can be distinguished from Q. balticus by the pale base of the basal three antennomeres. Generally, it has paler middle antennomeres compared to Q. molochinus. Compared to Q. vicinus it is generally slightly darker, elytra brownish red (pale red to yellowish in Q. vicinus), abdomen dark brown (light brown in Q. vicinus). For confident discrimination of these species, their genitalia should be checked: the aedeagus of Q. meridiocarpathicus differs from Q. molochinus in the absence of an extension of the C -sclerite in the internal sac, in the spatula-shaped paramere with clear proximal to medial attenuation, and larger peg setae. It can be distinguished most easily from Q. balticus by the shape of the paramere, which is medially broadened in Q. balticus and broadened towards apex in Q. meridiocarpathicus. It differs from Q. vicinus in the absence of a blunt apical hook on the paramere (parameral side). Quedius meridiocarpathicus can be confused with Q. picipes of the subgenus Raphirus, which may occur in similar environments. It can be readily distinguished from the latter by more parallel-sided abdomen and entire labrum.
Synonymic notes. Independent of each other, Smetana (1958) and Korge (1960b) recognized that a species very similar to Q. molochinus was present in Southeastern Europe. Korge (1962) himself synonymized Q. dalmatinus Korge, 1960 with Q. meridiocarpathicus Smetana, 1958. Based on the description and illustration of Q. dalmatinus, it clearly agrees with the concept of Q. meridiocarpathicus herein.
Bionomics. Quedius meridiocarpathicus appears to be found most frequently in wet debris and under rocks near water bodies, both fresh and saline. We (AKH and AS) have collected this species in the flood debris of a salt lagune near Bibione, Italy, in debris around the stagnant salt pond near the beach of Fokiano, Greece (Fig. 2C) and on the marsh debris near the Gefest Mud Volcano in the Taman Peninsula in southern Russia. Like many other Quedius s. str., the species is found at lower elevations in the northern part of its range and at much higher elevations (up to 2000 m) towards the southern part of its range.

Distribution. Quedius meridiocarpathicus is distributed from Italy through Southeastern Europe to the Crimea, Western Caucasus and Anatolia (Fig. 20). There seem to be rather well defined distributional boundaries between this species, and Q. molochinus and Q. vicinus. The northern range of Q. meridiocarpathicus is roughly delimited by the Alps and Carpathians, where it is replaced by Q. molochinus to the North of these mountain chains. The species continues north around the Black Sea to the western foothills of the Caucasus. To the South it extends to northern and western Anatolia, mainly along the coast, but it is also found more inland in some sites. In southern and eastern Anatolia Q. meridiocarpathicus is gradually replaced by Q. vicinus, with which it seems to co-occur to some extent in southern Anatolia.

Quedius molochinus (Gravenhorst, 1806)

(Figs 1, 4, 9, 8C,D, 12, 13D, 20)
Staphylinus molochinus Gravenhorst, 1806: 56 [Type locality: Brunsviga] Quedius denudatus Stephens, 1832: 216 [Type locality: London; Suffolk] Quedius lathburii Stephens, 1832: 218 [Type locality: London; Suffolk, Orwell]
Quedius niger Sahlberg, 1876: 229 [Type locality: Muonioniska]
Quedius maculicornis Mulsant \& Rey, 1876: 694 [Type locality: les montagnes du Lyonnais, à la Grande Chartreuse, dans les Pyrénées] Raphirus picipennis Stephens, 1833: 243 [Type locality: London] Staphylinus laevicollis Runde, 1835: 6 [Type locality: Halae] Staphylinus lapponicus Zetterstedt, 1838: 61 [Type locality: Lapponia Umensis, Lycksele; Wilhelmina; Gaskelougt]

References. Gyllenhal (1810): 302, (1827): 477 (characters); Sahlberg (1830): 314 (characters); (1876): 24 (distribution); MANNERHEIM (1830): 25, (1831): 439 (distribution); (1843): 232 (characters); Runde (1835): 5 (characters); Lacordaire (1835): 377 (characters); Curtis (1837): pl. 638 (characters); Nordmann (1837): 76 (distribution); Erichson (1839): 489, (1840): 535 (characters); HEER (1839): 276 (characters); STEPHENS (1839): 390 (characters); LAPORTE (1840): 177 (characters); KIESENWETTER (1848): 52 (characters); (1851): 419 (distribution); GRAVENHORST (1847): 227 (characters); Redtenbacher (1849): 709, (1857): 201, (1874): 198 (characters); Hardy (1851): 32 (biology); Fairmaire \& Laboulbène (1856): 537 (characters), Kraatz (1857): 500 (characters); Waterhouse (1858): 23 (synonymy); Thomson (1859): 25 (notes on types); (1860): 173 (synonymy); Gemminger \& Harold (1868): 570 (synonymy); Fauvel (1874): 290 (characters and distribution); Seidlitz (1875): 267 (characters); Mulsant \& Rey (1876): 692 (characters); Fowler (1888): 237 (characters); Reitter (1909): 112 (characters); Johansen (1914): 364 (characters); Gridelli (1924): 81, (1962a): 320 (characters); Portevin (1929): 341 (characters); MéQuignon (1937): 3 (synonymy); Hansen (1952): 142 (characters); Smetana (1958): 364 (characters and biology); (1962a): 136, (1965a): 38 (characters); (1962b): 134 (larval characters); (1964): 80, (1976a): 172, (1978a): 85, (1981): 638, (1990): 98, (1993): 50 (distribution); (1971): 133 (distribution; introduction to Nearctic); (1973): 1427 (introduction to Nearctic); Korge (1960b): 53 (characters); CoIFFait (1961): 52, (1963): 423, (1978): 194 (characters); PaLm (1963a): 141 (characters); LOHSE (1964): 212 (characters); Dvořák 1965: 89 (distribution); Рототskaia (1967): 82 (larval characters) Kasule (1968a): 66 (biology); (1970): 61 (larval characters); SzUJECKI (1968): 736 (distribution); OsELLa \& Zanetti (1975): 120 (biology); Bordoni (1976a): 95 (characters); Shilov (1975): 376 (distribution); POPE (1977): 31 (distribution); То́тн (1984): 120 (characters); Segers (1987): 182 (morphology); Welch (1993): 229 (morphology); Ciceroni \& Zanetti (1995): 32 (distribution); STANIEC (1996): 117 (pupal characters); Downie \& ArNett (1996): 391 (characters); Owen (2000): 252 (biology); Assing (2001): 75 (biology); Uhlig et al. (2006): 55 (distribution); MAJKA (2007): 949 (distribution); Dapkus \& Tamutis (2008): 33 (distribution); CUPPEN et al. (2011): 15 (distribution); Semionenkov et al. (2015): 335 (distribution).
Type material examined. Staphylinus molochinus: Syntype ô (ZMHB), labelled: "6230 / Braunsberg Dahl leg. / molochinus gr. gyll. / (Para)?typus Grav. / det. H. Korge Quedius molochinus Grav. Typus!".

Quedius niger: Syntype q (MZH), labelled:"Tjudi / J. Sahlbg. / 1617. / Mus. Zool. H:fors Spec. typ. No 157 Qued. molochinus var. niger J. Sbg./ Syntype / http://id.luomus.fi/GZ. 83 / Photographed 2020 Pekka Malinen". Additional material examined. AUSTRIA: Arbesbach, [48.49, 14.95], 13.VII.1957, leg. Schubert (1 q NMW); Admont, [47.56, 14.45], leg. H. Franz ($1 \subset$ NMW); Prater, [48.21, 16.39], 19.IX. 1964 (1 §HMD). CZECH REPUBLIC: Iser [Jizera] River, n. Benešov u Semil, [50.60, 15.36], $350 \mathrm{~m}, 24$. VII.1982, leg. Hieke ($1 q$ ZMHB); Pastviny n. Žamberk, [50.09, 16.56], 31.VII.-3.VIII.1982, leg. Hieke (1 q ZMHB); Podyji Nat. Park, forest, at river Dyje valley ca. 2.5 km NW of Havraníky, 48.83, 15.98, 240 m , sifted flood debris, 08.VI.2016, leg. A. Solodovnikov, J. Jenkins Shaw, \& A. Hansen (1 NHMD); Silesia Altvater [Praděd], [50.08, 17.23], leg. Letzner (1 SDEI); Teplice nad Metují, [50.59, 16.16], 3.-5.VIII.1992, leg. Hieke ($1 ~$ ZMHB); Vysoká Hola, NW Karlov, Malá Morávka, [50.08, 17.23], sifting litter of Pinus mugo, 25.VII.1993, leg. Zerche (1 SDEI). DENMARK: Hjelm Hede, [56.49, 8.91], 20.VII.1951, leg. J. Petersen (2 $\uparrow \uparrow$ NHMD). Bornholm: Øle \AA, 19.IV.1965, [55.05, 15.02], leg. F.

Bangsholt（1 \uparrow NHMD）．Funen：Bjergsted，［55．66，11．35］，1．VI．1981， leg．M．Hansen（ $1 \AA_{\text {§ NHMD）}}$ ）Ristinge Klint，［54．82，10．61］，14．VII．1978， leg．M．Hansen（ $2 \widehat{\delta} \widehat{\jmath}$ NHMD）．Zealand：Furesøstien，［55．81，12．41］， 27．IX．1954，leg．J．Petersen（3 Y \uparrow NHMD）；Holmegårds Mose，［55．29， 11．82］，26．VI．1975，leg．M．Hansen（1 đ NHMD）；Ormø，［55．21，11．45］， 13．IX．1997，leg．O．Martin（1 \uparrow NHMD）；Rude Skov，［55．83，12．47］， 19．VIII．1948，leg．J．Petersen（1 q NHMD）．FINLAND：Kilpisjärvi， ［69．04，20．81］，21．－22．VII．1985，leg．Hieke（1 $甲$ ZMHB）；Kiuruvesi，［63．65， 26．62］，6．VII．1951，leg．Linnavuori（1 § 2 q q ZMUO）；Mutenia，Sodan－ kylä，［68．02，27．41］，13．IX．2001，leg．J．Itämies，O．Nenonen（1 q ZMUO）； Rymättylä，［60．37，21．94］，leg．Linnavuori（1 q ZMUO）；Saana，Enontekiö， ［69．04，20．85］，10．VII．2013，M．Pentinsaari（1 ZMUO）．FRANCE：Chig－ ny，Oise River，［49．91，3．77］，Selchert（1 ZMHB）．GERMANY：Bayern， Schleissheim，［48．24，11．59］，15．V．1931，leg．Ihssen（1 ZMHB）；Berlin－ －Marzahn，Hellersdorfer Berg，［52．53，13．58］，8．VIII．1997，leg．Hieke（1 ठ ZMHB）；Brunn，Dosse［52．91，12．51］，16．III． 1980 leg．E．Rössner（2 ふ̋o SDEI）；Engolling，Auerbach，［48．79，13．10］，5．IX．1978，leg．K．Koufrauen （1 1 q ZMHB）；Erzgebirge，Flohtelberg，［50．42，12．95］，2．VI．1925，leg Uhmann（1 SDEI）；Finkenkrug nr．Berlin，［52．56，13．03］，12．IV．1898， leg．Dahl（1 q ZMHB）；Flessenow，Schwerin，［53．75，11．49］，4．VII．1968， leg．Uhlig（1 ZMHB）；Hainleite，SW Günseroda and Seega，［51．32，11．02］， 10．VIII．1993，leg．F．Hieke（1 ZMHB）；Marburg in Hess，［50．81，8．77］， 16．IV．1904，leg．Strand（ 1 ZMHB）；Neuendorf，Teupitz，［52．11，13．58］， 30．IV．1992，leg．Renner（1 ZMHB）；Sarnow n．Anklam，［53．75，13．63］， 29．IX．1964，leg．F．Hieke（ 1 ZMHB）；Strausberg，23．VII．1981，［52．56， 13．88］，leg．H．Wendt（1 q ZMHB）；Thüringer Wald nr．Scheibe，［50．48， 11．05］，under stones，8．I．1957，leg．Dieckmann（1 SDEI）；Willersdorf， ［51．02，8．85］，VII（1 \＆ZMHB）．ITALY：Gello，［43．96，10．45］，VI．1922， leg．A．Strand（ 1 NHMD）；Zeccone n．Pavia，［45．26，9．19］，17．X．1977， leg．P．Kanaar（ 1 § ZMHB）．NORWAY：Hemnesberget，［66．22，13．61］， 8．－14．VII．1903，leg．E．Strand（2 ổ ZMHB）；Kongsvinger Eis，［60．19， 12．01］，27．X．1980，leg．F．Midtgaard（1 JHMD）；Pasvik Lake，Sydva－ ranger，［69．34，29．53］，VI．1994，leg．G．Nietsch（1 § NMW）；Utgardsjön， Rønningen，Austmarka，［60．01，12．37］，28．VI．－10．VII．1975，leg．P．Kanaar （1 \subset ZMHB）．POLAND：Misdroy，［53．91，14．44］（1 đ ZMHB）；Pölitz ［Police］，Pommern，［53．55，14．57］，13．VI．1920，leg．E．Hanau（1 \subset ZMHB）； Riesengebirge［Krkonoše］，［50．79，15．57］，750m，moss，16．X．1902，leg． Dahl（1 ठ ZMHB）；Tamsel，［52．62，14．70］，20．V．1920，leg．Kuntzen（1 Q ZMHB）．RUSSIA：Chita Oblast：Malkhanskiy Khrebet，pass to Maleta， 20 km S Maloarkhangel＇sk， 50.2352 108．916，19．－25．VIII．1998， leg．A．Shavrin（NHMD）．Khanty－Mansi Autonomous District： Sovetsky region，Malaya Sosva Nature Reserve，near Cordon Hangokurt， road to Belaya Gora， $61.9504,64.2489,81 \mathrm{~m}$ ， nr a roadside puddle with Polytrichum sp．on clay，28．VI．2017，leg．A．B．Ryvkin（1 ठcRyv）．Kомі REP：Ukhta surrounding，［63．57，53．71］，29．VI．1974，leg．V．Shulov（6 ふ̋ 6 qq ZMHB）．Krasnoyarsk Krai：Niznaya Lebedyanka river，［61．96， 89．45］，23．VI．1992，leg．V．S．（1 cRyv）；Turukhanskiy Distr．，Mirnoye， ［62．28，89．03］6．－17．VII．1990，leg．L．B．Rybalov（ 1 ゐ 1 q cRyv）．LENIN－ grad Oblast：Saint－Petersburg，Sestroretsk，Rzhavaya kanava，［60．12， 29．96］，16．VIII．2009，leg．V．N．Prasolov（1 ZIN）；Stary Petergof，［59．87， 29．87］，forest，7．VI．1997，in leaf litter，leg．A．Solodovnikov（1 NHMD） Yaschera，［58．92，29．98］，18．V．1996，leg．L．Anisutkin（1 δ^{λ} NHMD）．Mo－ scow Oblast：Moscow，Izmajlovskij Park，［55．75，37．62］，7．VII．1983，leg． A．Isaev（ $1 \gtrsim$ NHMD）；Odintsovsky Distr．，Zvenigorod Biological Station of MSU，［55．70，36．72］，mixed forest，22．VIII．1984，leg．K．G．Mikhailov （ 2 ôc cRyv）．Murmansk Oblast：Kyndomys［Kindo］Peninsula，［66．65， 33．22］，forest floor，16．VII．1992，leg．Wegner（1 ZMHB）．Perm Krai： Perm city，［58．01，56．22］，pitfall，29．VIII．1978，leg．S．L．Esunin（1 § NHMD）．Rep．of Buryatia：Barguzinsky Distr．，Barguzin valley， 20 km E Ust－Barguzin，Gusikha，［53．42，109．42］，aspen forest，pitfalls，leg．V． Shilenkov（ $1 \AA$ NHMD）；Vitimsky Nat．Preserve，lake Oron，mouth or Labaznyj creek，Oron hut，［54．82，112．26］，27－30．VII．2000，leg．A．Sha－ vrin（ 2 §§ NHMD）．Ryazan Oblast：Ryazan Prov．，Spassky Distr．，Oka nature reserve，［54．71，40．85］，leaf litter，26．VI．1981，leg．Kormylutsyn \＆ Eskov（ $1 \delta^{\lambda} 1 q$ cRyv）．Sverdlovsk Oblast：Ural，Visim Nature Reserve， ［57．37，59．77］，25．I．1985，leg L．P．Titova（2 ôo cRyv）．Tyumen Oblast： Surgutsky Distr．，Yugansky Nature Reserve，Ai－Magromsy River Basin， near＇Medvezhii Ugol＇，［59．59，74．71］，22．IX．2002，leg．A．B．Ryvkin（1 ठ̄ cRyv）．Ulyanovskaja Oblast：Inzenskij Distr．，Argash village，［53．96， 46．25］，birch forest，9．VII．1995，leg．A．Isaev（ 2 へ入 NHMD）．SLOVAKIA： Inovec，［48．77，18．04］，IX．1931，leg．Čepelák（1 đ ZMHB）．SWEDEN：

Dagsås－trakten，Hall，［57．06，12．48］，26．X．1953，leg．J．T．Skovgaard（2 む̃̉ 3 우 NHMD）；Södermanand，Ornö，［59．05，18．41］，15．V．1946，leg． J．T．Skovgaard（1 § 1 ¢ NHMD）；Stockholm，Djurgården 23．III．1945， leg．J．T．Skovgaard（1 \uparrow NHMD）；Vitamölle，［55．69，14．21］，1．VIII．1926， leg．Stephensen（ 1 leg．J．T．Skovgaard（ $1 \delta^{\lambda}$ NHMD）．SWITZERLAND：Reussdelta，See－ dorf，［46．89，8．61］， 435 m ，VIII．1998，leg．Herger \＆Rezb．（1 đ ZMHB）． UNITED KINGDOM：England：Stanford le Hope，Essex，［51．51，0．42］， 7．IX．1969，leg．Wewalka（1 q NMW）．ScotLand：Bridge of Orchy，［56．51， －4．76］，23．VII．1987，leg．Gillerfors（1 q MZLU）；S Braemer，［56．99，－3．39］， 15．VII．1987，leg．Gillerfors（ 1 q MZLU）．
Redescription．Measurements $\widehat{\jmath}(\mathrm{n}=5): \mathrm{HW}=1.60-$ 1.78 （1．68）； $\mathrm{HL}=1.36-1.53$（1．44）；HL／HW 0．83－0．88 （0．85）； $\mathrm{PW}=2.09-2.24$（2．20）； $\mathrm{PL}=1.93-2.11$（2．04）； PL／PW 0．91－0．94（0．93）；EW＝2．00－2．18（2．11）；EL＝ 1．73－2．07（1．92）；EL／EW 0．87－0．95（0．91）；EL／PL 0．90－ 1.02 （0．94）；PW／HW 1．32－1．57（1．47）；forebody length 5．02－5．58（5．40）．q q（ $\mathrm{n}=5$ ）： $\mathrm{HW}=1.60-1.69$（1．64）； $\mathrm{HL}=1.38-1.51$（1．45）；HL／HW 0．86－0．93（0．89）； $\mathrm{PW}=$ 2．07－2．22（2．13）；PL＝1．91－2．09（2．00）；PL／PW 0．90－0．98 （0．94）； $\mathrm{EW}=2.04-2.18$（2．11）； $\mathrm{EL}=1.84-1.93$（1．91）； EL／EW 0．88－0．95（0．91）；EL／PL 0．91－1．01（0．96）；PW／ HW 1．40－1．53（1．47）；forebody length 5．22－5．51（5．35）．

Medium sized，robust species；body dark brown to black（Figs 8C，D）．

Head black，distinctly transverse，with eyes medium sized（EyL／TL＝1．67－2．13（1．76））；microsculpture of tran－ sverse waves；no interocular punctures between anterior frontal punctures（cf．Fig．6F）；antennae pale reddish with antennomeres $3-5$ slightly darkened，all antennomeres elongate；palpi pale reddish．

Thorax：pronotum dark brown to black，slightly wider than long，wider than head，with microsculpture of tran－ sverse waves；three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching just beyond level of first puncture of dorsal row；scutellum punctured and pubescent；elytra most often reddish brown rarely fully darkened，uniformly pubescent，slightly wider than long，roughly same length as pronotum；legs reddish brown with inner face of tibia and inner femur darkened．

Abdomen dark brown to black，tergites uniformly pun－ ctured，with slight iridescence．

Male．Aedeagus（Fig．13D）：paramere lanceolate with slight medial attenuation and extending into a slight ex－ pansion broadest below slightly asymmetric apex，reaching just beyond apex of median lobe，with sensory peg setae forming two long rows fusing together towards apex； median lobe broad with gentle constriction to a point at apex，on parameral side with two small teeth pointing slightly basad，positioned at level near basal level of peg setae band of paramere；C－shaped sclerite of internal sac with spine－like basal extension．
Differential diagnosis．Quedius molochinus is very similar to the other species with red elytra in the molochinus－group： Q．meridiocarpathicus，Q ．balticus，and Q ．vicinus．It can be distinguished from Q ．balticus by the pale base of the basal three antennomeres．In most cases it has darker middle antennomeres and is generally slightly darker with abdomen black to dark brown（dark to light brown in Q ． meridiocarpathicus and Q ．vicinus）．For confident discri－ mination of these species genitalia should be examined：ae－
deagus of Q. molochinus has an extension of the C -sclerite in the internal sac. Quedius molochinus with black elytra can be confused with Q. subunicolor where their ranges overlap. Usually, the lighter colored appendages and the coarser microsculpture of Q. molochinus are sufficient to distinguish it from Q. subunicolor. Quedius molochinus can be confused with Q. picipes from the subgenus Raphirus, which may occur in similar environments. It can be readily distinguished from the latter by more parallel-sided abdomen and entire labrum. In North America the species can be confused with Q. laticollis, from which it can be distinguished by stouter antennae with slightly darker middle antennomeres. Also, in Q. molochinus elytra are more often brick red or almost black, whereas in Q. laticollis they are most often dark brown.
Synonymic notes. Quedius picipennis Stephens, 1832 from London, Norfolk, Suffolk, Devonshire, and Somerset and Raphirus picipennis Stephens, 1833 from London have recently been mixed up as the same species in both Herman (2001) and Newton (2020). Based on the original descriptions, Raphirus picipennis clearly belongs in the Quedius subgenus Raphirus, whereas Quedius picipennis fits Q. molochinus. Original descriptions of Staphylinus laevicollis Runde, 1935 described from Halle in Central Germany and Staphylinus lapponicus Zetterstedt, 1838 described from Finland fit Q. molochinus, consistently with the currently accepted synonymy.
Bionomics. Quedius molochinus is found in meadows, heaths and grasslands, as well as in mainly coniferous forests. Most records are from under rocks or in moss. We have encountered it in flood debris near a river forested on either side in Czech Republic, in Sphagnum moss of a bog in Southern Sweden, and from pitfall traps set in a heathland in Denmark. Records from Russia (SemionenKov et al. 2015), Switzerland (Uhlig et al. 2006) and the Netherlands (Cuppen et al. 2011) are from meadows. In North America it seems to be in more ruderal habitats as well, having been found in e.g., potato fields on Prince Edward Island (Majka 2007).
Distribution. Among the closest congeners, Quedius molochinus is a more northern species widely distributed from France and British Isles through Central and Northern Europe, across European Russia and western Siberia to Transbaicalia (Fig. 20). In the southern areas of its distribution, it gradually moves to higher elevations, for example in the Alps extending into the Apennines. More thorough sampling in Russia may widen its distribution significantly.

Quedius molochinus is introduced in North America, where it is currently found in three separate areas in Canada: around the Avalon Peninsula of Newfoundland (Smetana 1981), in the Canadian Maritime Provinces (Nova Scotia, New Brunswick and Prince Edward Island, MaJKa 2007) and around Quebec City (Smetana 1981) (Fig. 12).

Quedius subunicolor Korge, 1961

(Figs 1, 2F, 4, 7F, 13C, 20)
Quedius subunicolor Korge, 1961: 81 [Type locality: Schweden, Häggenås, Jämtland]
Quedius altaicus Korge, 1962: 152 [Type locality: Zentral-Altai], syn. nov.

References. Palm (1962): 187, (1963): 142 (characters); Tiкhomirova (1973): 189 (distribution); Shilov (1975): 376 (distribution); Coiffait (1978): 193 (characters); LohSE \& LUCht (1989): 172 (biology); SALNitska \& Solodovnikov (2018a): 128-130 (redescription, suspected synonym of Q. altaicus); (2019): 47 (key and characters).

Type material examined. Quedius subunicolor: Paratypes (MZLU): 1 §, labelled: "Häggenäs s-n Jtl. T. Palm 4-8, 81945 / det. H. Korge Quedius subunicolor Korge / Paratypus subunicolor Korge / Quedius subunicolor Korge / Type no. 1202:2 MZLU/ 2016189 MZLU"; 3 千早, same data, but last two labels "Type no: 1202:3 MZLU/ 2016190 MZLU".

Quedius altaicus: Holotype: \ddagger (FMNH), labelled: "Zentral-Altai, lg. Leder, det. Bang-Haag / unicolor Kies. det. Bernhauer / q Holotypus Quedius s. str. altaicus H. Korge / Chicago NHMus M. Bernhauer Collection / Holotype teste D.J. Clarke 2014 GDI Imaging Project / Photographed Kelsey Keaton 2014 Emu Catalog / FMNHINS 2819427 Field Museum". Additional material examined. FINLAND: Kuusamo, [65.96, 29.17] (1 q ZMUO); Savukoski, [67.29, 28.15], 15.-25.VI.2006, leg. M. Mutanen, P. Välimaki \& M. Pentisaari (1 ZMUO). KAZAKHSTAN: Altai, Listvyaga, SSW Gora Tesninskiy Belok, Seredchikha River, [49.51, 85.25], 1200-1500 m, 27.VII.1997, R. Dudko \& V. Zinchenko (1 JHMD); Bukhtarma riv., Uryl-Chingistai, [49.19, 85.88], 13.VI.1987, leg. V.A. Kastcheev (1 § ZIN); Rahmanovskie Kluchi, [49.53, 86.50] 14.-16. VI.1980, leg. V.A. Kastcheev (1 ZIN); Saur ridge, Uidene riv., [47.20, 85.32], 1600-1800 m, 15.VII.2011, leg. V.A. Kastcheev ($10{ }_{\delta} 2$ 2 ¢ q ZIN). RUSSIA: Altai Rep.: Source of Kuma river, 50.9989, 84.1647, 1479 m , mixed forest, under stones, 4.VII.2019, leg. A. Solodovnikov, A. K. Hansen, \& M. J. Justesen (2 NHMD); Source of Kuma river, 50.9806, $84.1652,1800 \mathrm{~m}$, under stones, timber line, 3.VII.2019, A. Solodovnikov, A. K. Hansen, \& M. J. Justesen (1 ${ }^{1}$ NHMD). Rep. of Buryatia: Lake Baikal, Svjatoy Nos, [53.69, 108.86], 9.VIII.1997, leg. A. Shavrin (1 § NHMD). SWEDEN: Barsele, [65.04, 17.45], leg. Alan Dufberg (1 MZLU); Revsund, [62.89, 15.12], 27.V.1970, leg. R. Bergvall (3 MZLU).

Redescription. Measurements $\widehat{\delta} \widehat{ }(\mathrm{n}=6)$: $\mathrm{HW}=1.67-$ 1.78 (1.74); HL = 1.42-1.56 (1.49); HL/HW 0.80-0.89 (0.86); $\mathrm{PW}=2.24-2.40$ (2.32); $\mathrm{PL}=2.04-2.20$ (2.12); PL/PW 0.90-0.96 (0.91); EW = 2.22-2.56 (2.46); EL = 2.29-2.47 (2.36); EL/EW 0.92-1.03 (0.96); EL/PL 1.061.17 (1.11); PW/HW 1.50-1.64 (1.56); forebody length 5.78-6.04 (5.97). 아 ($\mathrm{n}=3$): HW = 1.67-1.76 (1.73); $\mathrm{HL}=1.44-1.49$ (1.47); HL/HW 0.82-0.88 (0.85); $\mathrm{PW}=$ 2.13-2.33 (2.25); PL=1.89-2.02 (1.97); PL/PW 0.83-0.94 (0.88); $\mathrm{EW}=2.11-2.47$ (2.30); $\mathrm{EL}=2.00-2.36$ (2.24); EL/EW 0.95-1.01 (0.97); EL/PL 1.00-1.25 (1.14); PW/ HW 1.45-1.62 (1.54); forebody length 5.47-5.82 (5.67).

Medium sized, robust species; body black (Fig. 7F).
Head black, distinctly transverse, with eyes medium sized (EyL/TL = 1.88-2.13 (2.02)); microsculpture of fine transverse waves, in some areas almost meshed; no interocular punctures between anterior frontal punctures (cf. Fig. 6F); antennae brown with antennomeres $1-5$ clearly darkened, all antennomeres elongate; palpi brown.

Thorax: pronotum black, slightly wider than long, wider than head, with microsculpture of transverse waves; three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching just beyond level of first puncture of dorsal row; scutellum punctured and pubescent; elytra black, uniformly pubescent, slightly wider than long, roughly as long as-slightly longer than pronotum; legs dark brown to black, tarsi usually lighter pale brown.

Abdomen black, tergites uniformly punctured, with slight iridescence.

Male. Aedeagus (Fig. 13C): paramere lanceolate with
no or very slight medial attenuation, reaching just beyond apex of median lobe, with rather large sensory peg setae forming two long single rows fusing together towards apex; median lobe broad with gentle constriction to a point at apex, on parameral side with two small teeth pointing slightly basad, positioned at level near basal level of peg setae band of paramere; internal sac without a continuation of C-sclerite.
Differential diagnosis. Quedius subunicolor is very similar to the species of the molochinus-group with dark elytra - Q. unicolor, Q. sundukovi - and to the dark forms of Q. molochinus. It differs from Q. unicolor by the microsculpture of head consisting of transverse waves and rarely becoming meshed (clearly meshed frons appearing dull in Q. unicolor). Also, genitalia are clearly different in both species, and they have completely non-overlapping distributions. Quedius subunicolor can be clearly distinguished from Q. sundukovi by the presence of the palisade fringe of tergite VII, which is missing in Q. sundukovi. It usually differs from the dark forms of Q. molochinus in the darker colored appendages and finer microsculpture. If in doubt the internal sacs are also clearly different in both species: in Q. subunicolor C -sclerite lacking an extension, which is present in Q. molochinus.
Synonymic notes. Korge (1961) described Quedius subunicolor from Sweden for fully darkened specimens that originally were assigned to Q. unicolor, a species which is actually restricted to the central and southern European mountains. Additional records showed that Q. subunicolor was rather widespread in Scandinavia (Palm 1962, 1963; Tiкhomirova 1973). Nearly at the same time, Korge (1962) described Q. altaicus based on two females from an unspecified locality in 'central Altai'. Salnitska \& Solodovnikov (2018a) made a thorough morphological comparison between Q. altaicus and Q. subunicolor, including type material and demonstrated that the external characters claimed by KORGE (1962) as unique for Q. altaicus compared with Q. subunicolor (microstructure of the head, proportions of the pronotum, chaetotaxy of the head and pronotum) vary continuously between both species. They suspected a synonymy and suggested that molecular comparisons of the two species should be conducted. The results of such an analysis here, that included newly collected material, suggest that specimens from Northern Europe and Altai are identical based on COI barcode (0.6\% intraspecific variation among them in one clade; Table 2; Fig. 4). Since there is continuous morphological variation and no clear separation in COI, there is no evidence for separate species. We therefore propose that Quedius altaicus Korge, 1962 syn. nov. is placed in synonymy with Quedius subunicolor Korge, 1961.

Quedius subunicolor has historically been confused with Q. unicolor. Many older specimens from Scandinavia and Northern Russia have been assigned to Q. unicolor, although these belong to Q. subunicolor. More recently, it has been erroneously reported from the Bohemian Forest in Central Europe, e.g., BоHÁČ \& MATĚÍÍČEK (2004).
Bionomics. In Northern Europe Q. subunicolor is almost exclusively found in bogs and fens. This is a type of habitat
that historically has often been drained for agriculture and peat gathering, thus the species may be rarer now than it used to be. In the Altai Mountains all hitherto known specimens were collected at the elevations 1200-2000 m . We (AKH and AS) have spent six days in the western Altai mountains in the early summer of 2019 searching for this species. There we sifted many types of debris, but without any luck. It was not until we started turning stones just below the timber line that we found the first specimen. In spite of six days of focused collecting, we encountered only three specimens, all collected from under rocks near streams in forested areas (Fig. 2F). The low number of specimens we encountered is in agreement with the very few numbers of specimens available in museums. The species is likely very rare and patchily distributed across its range. Contrary to the morphological and molecular homogeneity of this species, we see a clear difference in habitat preference between the Scandinavian populations restricted to bogs and Altaian populations confined to the banks of mountain creeks at higher altitudes. Such variation in habitat preference within the distribution range is not unique and is also found in other members of Quedius sensu stricto, e.g., Q. labradorensis. Presumably, these different habitats provide the same or similar parameters of temperatures and moisture for a species within a wide range.
Distribution. Quedius subunicolor currently displays a disjunct distribution between Northern Europe and Altai Mountains, with few specimens known from the Ukhta District in the Komi Region of Russia (Shilov 1975) and from Lake Baikal listed herein (Fig. 20). It is still unknown if Q. subunicolor represents a species continuously distributed from Northern Europe to Altai, or if it is a hitherto unrecorded case of a boreo-montane disjunction between Northern Europe and Siberian mountains. Further sampling should be done in the areas of the apparently large distributional gaps.

Quedius sundukovi Smetana, 2003

(Figs 1, 4, 7, 8F, 13B, 15, 20)
Quedius sundukovi Smetana 2003: 189-193 [Type locality: Badshalskyi Khrebet mountains]
References. Smetana \& Shavrin (2018): 834 (distribution); Salnitska \& Solodovnikov (2018a): 130-131 (distribution); (2019): 50 (characters and distribution).

Material examined. KAZAKHSTAN: SW Altai, East of Narymskij Mt. Ridge, upper course of Ozernaja River, 49.0478, 85.1614, 1900-2300 m, supalpine zone, 18.VII.1997, leg. R.Yu. Dudko \& V.K. Zinchenko (ZIN). RUSSIA: Jewish Autonomous Reg.: Kuldur vill., 49.1854, 131.6171, pitfall trap, stream, 480m, 14.-15.VII.2017, leg. A. Bergmann (1 © cSch). East Yakutia: Suntar-Khayata Mts, Valley of Tyry river valley, Kidyrki river near Khalya, [62.35, 138.46], 800-950 m, 14.-19.VIII.1991, leg. Alexeev (NHMD). Khabarovsk Terr.: Badshalskyi chr., Omot lake, [50.54, 134.26], tundra, 1850-2050 m, 7.-19.VII.1997, leg A. Plutenko (2
 25.VII.2006, leg. U. Valainis (ZIN); Levaja Bureya riv., the left bank of the Imganakh river near the mouth, $51.7355,134.572,650-670 \mathrm{~m}$, sloppy rocky hills with burrow pits, litter and mosses of Picea ajanensis, Abies nephrolepis, Larix gmelinii, Rhododendron dauricum, Betula platyphylla, Hylocomium splendens, Pleurozium schreberi, Ptilium crista-castrensis, Dircranum sp., Polytrichum sp., Sphagnum girgensohnii, Sph. sp., 26.VI.2011, leg. A.B. Ryvkin (ZIN); Verkhnebureinsky natural park, Ust-

Fig. 14. Aedeagus of Quedius s. str. A - Q. unicolor Kiesenwetter, 1847; B - Q. levasseuri Coiffait, 1964 (syn. of Q. pallipes Lucas, 1846); C $-Q$. hispanicus Bernhauer, 1898; D - Q. pallipes Lucas, 1846; E-Q. laticollis (Gravenhorst, 1802); F - Q. strenuus Casey, 1915. I - Parameral view of whole aedeagus, II - apices of paramere in antiparameral view with peg setae, III - lateral view of whole aedeagus, IV - apices of median lobe at an angle between parameral and lateral view.
-Urgal project gauging station Ust-Niman Topolevnik, 51.3995, 132.733, 1.IX.2009, leg. L.A. Trilikauskas (NHMD); Verkhnebureinsky natural park, Ust-Urgal project gauging station Ust-Niman Topolevnik, 51.3995, 132.733, 315 m, Padus, Alnus, Salix, Picea, Plagiomium, 4.VIII.2009, leg. A.B. Ryvkin (ZIN). Sakhalin Island: 13 km N from Korsakov, 2 km N from Solovyovka, [46.74, 142.73], Acer, Betula, 5.VIII.1992, leg. V. Gusarov, (CNC); 13 km N from Korsakov, 2 km N from Solovyovka, [46.74, 142.73], Abies, Larix, Ledum, Betula, 6.VIII.1992, leg. V. Gusarov (CNC). Zabaykalsky Krai: Stanovoy Highlands, W part of Kodar, top Chara River, 50 km WSW River Novaya Chara, [56.65, 117.54], 17002000 m, 27.VII.1995, leg. A. \& R. Dudko, D. Lomakin (ZIN); Stanovoy Highlands, top Chara River, Lake Leprindo, 56.636, 117.537, 1000 m, 23.VII.1995, leg. A. \& R. Dudko, D. Lomakin (ZIN).

Redescription. Measurements $\begin{gathered} \\ \text { on }\end{gathered}(\mathrm{n}=5)$: $\mathrm{HW}=1.40-$ 1.69 (1.53); HL = 1.22-1.40 (1.29); HL/HW 0.79-0.89 (0.85); PW = 1.82-2.22 (2.00); PL = 1.71-2.07 (1.81); PL/PW 0.80-0.96 (0.91); EW = 1.80-2.09 (1.88); EL $=1.44-1.71$ (1.60); EL/EW 0.80-0.89 (0.85); EL/PL 0.83-0.95 (0.89); PW/HW 1.46-1.67 (1.55); forebody length 4.38-5.18 (4.70). 아 $(\mathrm{n}=5)$: $\mathrm{HW}=1.58-1.73$ (1.67); $\mathrm{HL}=1.33-1.42$ (1.38); HL/HW 0.78-0.87 (0.83); $\mathrm{PW}=1.93-2.24$ (2.04); $\mathrm{PL}=1.80-2.11$ (1.88); PL/PW $0.90-0.94$ (0.92); EW = 1.89-2.09 (1.96); EL=1.69-1.78 (1.72); EL/EW 0.83-0.91 (0.88); EL/PL 0.82-0.96 (0.92); PW/HW 1.39-1.58 (1.48); forebody length 4.82-5.27 (4.99).

Small sized species; body dark brown to black (Fig. 8F).
Head black, distinctly transverse, with eyes medium sized (EyL/TL $=1.73-2.00(1.83))$; microsculpture of fine transverse waves; no additional punctures between anterior frontal punctures (cf. Fig. 6F); antennae dark internally becoming continuously lighter, all antennomeres slightly elongate; palpi pale with apical palpomere slightly darkened.

Thorax: pronotum black, wider than long, wider than head, with microsculpture of transverse waves; three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching just beyond level of first puncture of dorsal row; scutellum sparsely punctured and pubescent; elytra most often fully darkened but occasional
dark reddish brown, short uniformly pubescent, clearly shortened wider than long, clearly shorter than pronotum; legs dark with tarsi lighter.

Abdomen black, tergites sparsely and uniformly punctured, without palisade fringe of tergite 7 , without clear iridescence.

Male. Aedeagus (Fig. 13B): paramere lanceolate with slight medial attenuation and extending into a slight expansion broadest below apex, apex slightly asymmetric, reaching just beyond apex of median lobe, with sensory peg setae forming two long rows fusing together towards apex (Fig. 15); median lobe broad with gentle constriction to a point at apex, on parameral side with two small teeth pointing slightly basad, positioned at level near basal level of peg setae band of paramere; internal sac without a continuation of C-sclerite.
Differential diagnosis. Quedius sundukovi is most similar to Q. unicolor, Q. subunicolor, and Q. molochinus. It can easily be distinguished from all these species by its smaller size and brachypterous habitus with shortened elytra and absent palisade fringe on tergite VII. If in doubt, the aedeagus can be checked for characters listed in the diagnosis. It is also similar to Siberian species Q. (Raphirus) jenisseensis Sahlberg, 1880, from which it is easily distinguished by the entire labrum (medially incisioned in Q. jenisseensis). Comments. Quedius sundukovi was described by SmetanA (2003) based on 13 specimens from the Badshalskyi Khrebet mountains in Khabarovsk Krai in the Far East of Russia. Smetana \& Shavrin (2018) reported additional specimens from Vitimskiy Nature Reserve and the Udokan Plateau extending the species range significantly westwards in Russia to Transbaikalia. Salnitska \& Solodovnikov (2018a) reported a number of records of this species from the Altai Mountains in Kazakhstan. Salnitska \& Solodovnikov (2019) reported the occurence of this species in Buryat Republic in Transbaikalia and in the Russian Far East regions of Amur Oblast and Sakhalin Island (Fig. 20). Here we add detailed information on many of these

Fig. 15. Variation of the shape of the paramere of Quedius sundukovi Smetana, 2003. Locality and BOLD BIN number are indicated under respective specimens.
records along with COI barcodes from specimens across the range (Fig. 4). The barcodes showed high variation as we recovered five OTUs (four BINs) with as high as 7.7% divergence between the OTUs (Table 2). Morphological studies of the specimens also revealed some variation in size - but not in the shape - of the paramere (Fig. 15). We found no differences to correspond to any of the molecular clusters, which also did not cluster geographically. Lack of a clear congruence between the molecular and morphological variation, as well as no hiatus between different morphological variants, suggests that they all represent a single species. The species is known across a large area with complex montane orography and it is flightless, with the palisade fringe of abdominal segment VII absent and clearly shortened elytra. Apparently, the high degree of the intraspecific variation can be related to the flightlessness of the species leading to low dispersal abilities of members of different populations and accelerated rates of divergence in the barcode region (Mitterboeck \& Adamowicz 2013).
Bionomics. Little is known about the specific habitat requirement of Q. sundukovi. Based on the examined material, the species appear to occur in various leaf litter, both coniferous and deciduous, and is commonly associated with talus debris and moss, often near streams or rivers. Specimens are found within a wide range of elevations from 315 to 2300 m , at higher elevation at lower latitudes. Distribution. Quedius sundukovi is currently known from relatively few specimens scattered across a large range comprising the Altai Mountains, Transbaikalia, Bureya and the Suntar-Khayata Range (Fig. 20). It is also found on Sakhalin Island. Although currently known from only a few localities, the species distribution is most likely continuous. The range maybe poorly known because it spans through an area with very little recent and historical entomological activity, especially for leaf-litter dwelling organisms.

Quedius unicolor Kiesenwetter, 1847

(Figs 1, 2G, 4, 7E, 14A, 21)
Quedius unicolor Kiesenwetter in Kiesenwetter \& Märkel (1847: 75). [Type locality: Riesengebirge]

References. Kiesenwetter (1848): 53 (characters); Redtenbacher (1849): 825, (1857): 202, (1874): 199 (characters); FAIRMAIRE \& LABOULbène (1856): 536 (characters); Fauvel (1874): 291 (characters); Mulsant \& Rey (1876): 697 (characters); GANGLbaUER (1895): 403 (characters); Porta (1907): 132 (characters); Reitter (1909): 112 (characters); Gridelli (1924): 80 (characters); Portevin (1929): 341 (characters); WÜSTHOFF (1938): fig. 24 (characters); Smetana (1955): 143, (1960a): 259, (1964): 168, (1966): 331, (1993): 50 (distribution); (1958): 363 (characters and biology); (1962a): 134 (characters); Coiffart (1961): 49, (1978): 193 (characters); LOHSE (1964): 211 (characters); HAVELKA (1964): 93 (distribution); Horion (1965): 274 (distribution); Bordoni (1976a): 94 (characters); Zerche (1977): 9 (distribution), TóTH (1984): 119 (characters); Lucht (1987): 109 (distribution); JANÁK (1992): 91 (distribution); Herman (2001): 50 (application to ICZN), Tronquet (2006): 102 (distribution); MAZUR et al. (2007): 30 (distribution); Mateleshko (2007): 184 (distribution); SChATZ (2008): 388 (distribution); ZANETTI (2015): 96 (distribution).

Material examined. AUSTRIA: Golling, [47.59, 13.16], leg. Skalitzky (1 \uparrow NMW); Kerschbaumeralm, [46.75, 12.76], 24.VII.-7.VIII.1948, leg. F. Schubert (1 q NMW); Koralpe, [46.88, 14.99], leg. A. Otto (3 ${ }^{\text {ô }}$ NMW); Lünersee, [47.05, 9.74], 14.VI.-3.VII.1952, leg. F. Schubert (1 q NMW); Stuhleck, [47.56, 15.78], leg. Breit ($1 \not+$ NHMD); Stuhleck, Steiermark, [47.56, 15.78], leg. Wingelmüller (1 q NMW); Tirol, [47.22,
11.51] (1 SDEI); Wechsel, [47.52, 15.91], leg. Scheerpeltz (3 $\circ \odot+$ NMW); Wolayersee, [46.61, 12.86], 3.-11.VIII.1949, leg. F. Schubert (2 ふへ 1 \& NHMD); Zillertal nr. Mayrhofen, [47.16, 11.87], 4.VIII.1914, leg. H. Wagner (1 SDEI); Wolayersee, [46.61, 12.86], 3.11.VIII.1949, leg. F. Schubert ($2 \uparrow \uparrow$ NMW). CZECH REPUBLIC: Krkonoše [50.71, 15.66], leg. Obenberger ($1 \bigcirc 2$ § NHMD); Spindelmühle [Špindlerův Mlýn], [50.73, 15.61], leg. Skalitzky (1 NHMD). GERMANY: Harz, Brocken, [51.79, 10.61], 9.V.1922, leg. Uhmann (1 ठ SDEI); Hercyn mont. [Harz Mountains], [51.74, 10.63], 14.VI.1914, leg. Beckenkamp (3 १ \uparrow SDEI); Thüringer Wald Oberhof, [50.71, 10.73], 8.IX.1951, leg. W. Liebmann ($1 \nrightarrow$ SDEI). ITALY: Gressory [Gressoney] la Trinite, [45.87, 7.82], 15.VII.1901, leg. Künnemann (1 SDEI); Malga Preghena Alta, Trento, $46.4148,10.8922,2100 \mathrm{~m}$, under stones along stream with moss, 26.VIII.2019, leg. A. Zanetti (NHMD); Valle Brembana, Strada di Porcile, [46.06, 9.73], 1800-2000 m, 26.VI.1961, leg. V. Rosa ($1 \delta^{\lambda}$ NMW). POLAND: Silesia [Bad] Flinsberg [Świeradów-Zdrój], [50.92, 15.31], leg. Kraatz (1 SDEI). SPAIN: Cantabria, Alto Campoo, W Reinosa, [43.03, -4.37], 4.VI. 1991 2000m leg. Zerche (1 SDEI). SLOVAKIA: Ružomberok, [49.04, 19.23], VII.1952, leg. Přívora (1 ठ NHMD); High Tatras, Mengušovská dolina, Vysoke Tatry, [49.16, 20.07], 1200 m, 17.V.1991, leg. J. Frisch (1 đ ZMHB); Tatra, Král'ova hol'a, [48.88, 20.13], 13001600 m, 12.VIII.1981, leg. Hieke (1 đ ZMHB). SWITZERLAND: Aarau, [47.38, 8.05], leg. Stierlin (1 SDEI).

Redescription. Measurements $\widehat{\lambda}{ }^{\lambda}(\mathrm{n}=5)$: $\mathrm{HW}=1.47-$ 1.76 (1.58); $\mathrm{HL}=1.31-1.44$ (1.36); HL/HW 0.82-0.91 (0.86); PW $=1.96-2.33$ (2.16); $\mathrm{PL}=1.78-2.02$ (1.91); PL/PW 0.86-0.92 (0.89); $\mathrm{EW}=2.13-2.47$ (2.32); $\mathrm{EL}=$ 2.18-2.47 (2.32); EL/EW 0.95-1.05 (1.00); EL/PL 1.151.26 (1.22); PW/HW 1.47-1.65 (1.58); forebody length 5.36-5.93 (5.58). 우 ($\mathrm{n}=5$): $\mathrm{HW}=1.58-1.67$ (1.61); $\mathrm{HL}=1.31-1.42$ (1.37); HL/HW 0.79-0.89 (0.85); $\mathrm{PW}=$ 2.00-2.18 (2.08); PL=1.82-1.89 (1.87); PL/PW 0.87-0.92 (0.90); $\mathrm{EW}=2.22-2.40$ (2.31); $\mathrm{EL}=2.20-2.40$ (2.31); EL/EW 0.96-1.01 (0.99); EL/PL 1.19-1.27 (1.23); PW/ HW 1.45-1.57 (1.52); forebody length 5.36-5.69 (5.52).

Medium sized species; body black (Fig. 7E).
Head black, distinctly transverse, with eyes rather small (EyL/TL = 1.59-2.00 (1.82)); microsculpture of fine mesh, especially on frons, appears dull; no interocular punctures between anterior frontal punctures (cf. Fig. 6F); antennae dark brown to black, all antennomeres slightly elongate; palpi dark brown to black.

Thorax: pronotum black, slightly wider than long, clearly wider than head, with microsculpture of fine transverse waves; three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching just beyond first puncture of dorsal row; scutellum punctured and pubescent; elytra black, uniformly pubescent, as long as wide, clearly longer than prontoum; legs dark, outer face of tibia and tarsi often paler.

Abdomen black, tergites uniformly punctured, without clear iridescence.

Male. Aedeagus (Fig. 14A): paramere lanceolate with slight medial attenuation and extending into a slight expansion broadest below apex, apex extending into small blunt knob away from the median lobe, apex slightly asymmetric, reaching just beyond apex of median lobe, with sensory peg setae forming two rows fusing together towards apex; median lobe broad with gentle constriction to a point at apex, on parameral side with two small ridges continuing basad, positioned at level near basal level of peg setae band of the paramere; internal sac without C-sclerite.

Differential diagnosis．Quedius unicolor is very similar to other species with dark elytra from the molochinus－ －group－Q．subunicolor，Q．sundukovi and the dark form of Q ．molochinus．It can be distinguished from Q ． subunicolor by the dull frons due to meshed micros－ culpture（in Q ．subunicolor the microsculpture consists of fine transverse waves or only slightly meshed）．Also， the genitalia and the distributions are clearly different in the two species．It usually differs from the dark form of Q ．molochinus in the darker appendages and the finer microsculpture in addition to a clearly different aedagus， which is without a C－sclerite in Q ．unicolor，but with such in Q ．molochinus．Quedius unicolor has non－overlapping distribution with Quedius sundukovi and can be clearly distinguished from the latter species by the presence of palisade fringe on tergite VII．

Quedius unicolor has historically been confused with Q．subunicolor．For details see comments about the latter species．
Comments．Quedius unicolor was originally described from Riesengebirge［Krkonoše］（Kiesenwetter \＆Märkel 1847），a mountain range at the border between Poland and Czech Republic．It was later discovered in other mountainous area，including the Alps，the Carpathians， the Pyrenees，Picos de Europa，the Harz Mountains，and possibly extending into Sierra Nevada and even central Anatolia，although the latter records are not confirmed here（Coiffait 1961，Abacigil et．al 2009；Fig．21）．At these sites it seems to be restricted to a very specific habitat type，with most specimens being found under stones and in moss near mountain streams at higher elevations．COI barcodes of specimens from several sites，including the Austrian and Italian Alps，the Carpathians of Slovakia，and Picos de Europa in Spain displayed high genetic variability （Fig．4），with the sites being grouped into three OTUs（the Carpathians，Picos de Europa，and the Alps）ranging from 3.5% to 4.5% divergence，with a 0.2% divergence between the Austrian and Italian Alps（Table 2）．With such a high genetic divergence in the barcode region，we carefully checked for morphological differences．However，we found no obvious differences corresponding to the molecular clusters．Since the wings seem to be fully developed in this species，these genetic differences may be attributed to isolation by distance，the very specific habitat requirements of the species and its close association to a now fragmented habitat，which would limit gene flow among populations． Bionomics．Quedius unicolor seems to be very habitat se－ lective and is only found in alpine sites in sphagnum moss and under rocks near bogs，swamps and creeks（Fig．2G）． It is found at altitudes between 900 and 2300 m depending on the latitude of the locality，with higher elevations at more southern sites．
Distribution．Quedius unicolor is restricted to the montane and subalpine zone of Central and southern Europe（Fig． 21）．Specifically，it is known from sites in the Carpathians， the Alps，the Pyrenees，Picos de Europa，the Sudetes，the Harz and the Ore mountain ranges．Due to its very specific habitat requirement，it may be under－collected and may actually be present in mountains further south．Coiffait
（1961）reported it from Sierra Nevada in Southern Spain， but this record may be in fact a misidentified Q ．hispanicus． Another doubtful record of Q．unicolor comes from Koçere Stream in the Kazdağları Mountain of the North－western Anatolia by Abacigil et．al（2009），which is a location remote from the main range of this species．

Quedius vicinus（Ménétriés，1832）

（Figs 1，4，8A，13A，20）
Staphylinus vicinus Ménétriés，1832： 144 ［Type locality：Lenkoran］
Quedius libanicus Coiffait，1954： 160 ［Type locality：Liban：grotte de Birket Aanjar］

References．Faldermann（1835）： 129 （characters）；Hochhuth（1862）： 44 （distribution）；Coiffart（1955）： 427 （biology）；（1961）：55，（1978）： 195 （characters）；Jarrige（1971）： 497 （distribution）；Korge（1971）： 11 （characters）；BOHÁČ（1988）： 554 （characters）；Gusarov（1993）： 73 （lec－ totype designation，synonymic notes）；Assing \＆Wunderle（2001）： 37 （distribution）；SALNITSKA \＆SOLODOVNIKOV（2018a）： 131 （distribution）； （2019）： 51 （characters and distribution）．
Type material examined．Quedius vicinus：Lectotype q［torso without head and thorax］（ZIN），designated by Gusarov（1993）［not examined］， labelled：＂［golden square］／Lenkoran．／vicinus Menet．Lenkor．＂（Gu－ sarov 1993）．
Additional material examined．AFGHANISTAN：Obéh，［34．35， 63．23］， 1680 m （ 1 ठT NMW）．CYPRUS：Episcope，Limasol，［34．67， 32．88］，12．IV．1995，leg．Schmid（3 ふo 5 千q ㅇ NMW）；Larnaca，［34．89， 33．63］，salt lake， $10 \mathrm{~m}, 20 . I V .1995$ ，leg．W．Suppantschitsch（1 ${ }^{\top}$ NMW）． GEORGIA：Kumisi nr．Tbilisi，［41．61，44．78］，20．VI．1988，leg．Wrase （1 § cSch）．IRAN：Darab to Estahban Rd．，20km NW Darab，28．8525， 54.4093 ，1300m，16．IV．2006，leg．Serri \＆Frisch（ 1 ¢ SDEI）；Sonqor， Kermanshah，［34．78，47．59］， $1800 \mathrm{~m}, 7 . \mathrm{VII} .1969$ ，leg．Heinz（1 ठ ZMHB）；SE Sepidan，W Dalkhan，30．2911，52．0951，2100m，9．V．2007， leg．Frisch \＆Serii（2 ${ }^{\top}$ đ SDEI）．ISRAEL：Hazerim，［31．24，34．71］， 8．X．1988，leg．E．Orbach（1 NHMD）；Kfar Ha Horesh，n．Nazareth， ［32．70，35．27］， $500 \mathrm{~m}, 8 . \mathrm{IV} .1997$ ，leg．Heinz（ $1 \not \subset$ ZMHB）Lower Galilee， ca． 4 km W Tamra，32．8633，35．1715，loamy field edge， 25 m 25．IV． 2006 leg．D．W．Wrase（ $1 \AA \mathrm{cSch}$ ）；Wadi Musrara［Ayalon River］，Petah Tiqwa， ［32．09，34．80］，5．XI． 1932 （3 đ̂̉ NMW）．JORDAN：Wádi，Hisbán，NW Ma＇dabá， $31.8286,35.7945,681 \mathrm{~m}$ ，brook，slopes and field edges，under stones，1．IV．2016，leg．Wrase \＆Laser（ 1 ठ̄ cSch）．LEBANON：Beirut， ［33．88，35．50］，leg．Kindern（1 q SDEI）．SYRIA：Zabadani，［33．72， 36．09］，15．IV．1978，leg．Heinz（1 q ZMHB）；Zainie， 45 km NE of La－ takia，［35．78，36．19］，4．V．1982，leg．M．Dvořák（1 \uparrow MCZ）．TURKEY： Antalya，Aksu，［36．88，30．92］，13．IV．1977，leg．Korell（1 ठ 1 q ZMHB）， Antalya，Alara Han，［36．69，31．72］，300m，1997，leg．H．Winkelmann（1 $q \mathrm{cSch})$ ；Antalya， 26 km W Alanya，nr．Incecum，［36．63，31．74］，16．IV．－ 2．V． 1954 leg．V．Brachat（ 1 ō cSch）；Catalan，Adana，［37．20，35．29］， 18．IV．1985，leg．Barries（1 q NMW）；Karaman Stream，Antalya，［36．86， 30．61］，IV．1962，leg．Schweiger（1 §7 ZMHB）；Mardin，［37．29，40．72］， 1300 m，10．－15．V．1969，leg．Schubert（1 NMW）；Muratpaşa， 20 km E Kırıkhan，［36．47，36．45］， $20 \mathrm{~m}, 16$ ．IV．1989，leg．Heinz（ 1 § 1 q ZMHB）； E Pamucak，Selcuk，［37．96，27．27］，swamp，28．III．1986，leg．Heinz（1 ठ̄ 1 q ZMHB）．TURKMENISTAN：Kopet Dag， 6 km NE Tschuli n．Firjuza， ［37．98，58．02］，18．IX．1976，leg．Hieke（5 Øす ZMHB）．
 1.80 （1．72）； $\mathrm{HL}=1.40-1.53$（1．48）；HL／HW 0．83－0．87 （0．86）； $\mathrm{PW}=2.16-2.44$（2．30）； $\mathrm{PL}=2.02-2.20$（2．11）； PL／PW 0．89－0．94（0．92）；EW＝2．20－2．47（2．33）；EL＝ 2．07－2．24（2．16）；EL／EW 0．91－0．94（0．93）；EL／PL 0．99－ 1.04 （1．02）；PW／HW 1．52－1．60（1．56）；forebody length 5．49－5．96（5．74）．우 $(\mathrm{n}=5)$ ： $\mathrm{HW}=1.69-1.73$（1．72）； $\mathrm{HL}=1.38-1.49$（1．45）；HL／HW 0．79－0．87（0．84）； $\mathrm{PW}=$ 2．22－2．42（2．32）；PL＝2．04－2．22（2．12）；PL／PW 0．91－0．92 （0．92）； $\mathrm{EW}=2.38-2.47$（2．44）； $\mathrm{EL}=2.18-2.36$（2．26）； EL／EW 0．92－0．95（0．93）；EL／PL 1．01－1．11（1．07）；PW／

HW 1.52-1.66 (1.60); forebody length 5.73-6.07 (5.84).
Medium sized to large, robust species; body light to dark brown (Fig. 8A).

Head dark, distinctly transverse, with eyes rather small (EyL/TL = 1.45-1.82 (1.60)); microsculpture of transverse waves; no interocular punctures between anterior frontal punctures (cf. Fig. 6F); antennae and palpi pale yellowish--brown with base of antennomeres $1-3$ clearly pale, all antennomeres clearly elongate.

Thorax: pronotum slightly wider than long, wider than head, with microsculpture of transverse waves; three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching just beyond first puncture of dorsal row; scutellum punctured and pubescent; elytra orange to yellowish-brown, uniformly pubescent, slightly wider than long, roughly of same length as pronotum; legs pale yellowish-brown with inner face of tibia and femur darkened.

Abdomen: tergites uniformly punctured, with slight iridescence.

Male. Aedeagus (Fig. 13A): paramere rather slender, with a slight apical expansion and extending into a blunt hook oriented away from median lobe, reaching just beyond apex of median lobe, with sensory peg setae forming two short broad rows fusing together towards apex; median lobe broadly constricting to a point at apex, on parameral side folded into two teeth almost meeting at middle, positioned at level near basal end of peg setae rows of paramere; internal sac without C-sclerite.
Differential diagnosis. Quedius vicinus stands out as a rather pale member of the Q. molochinus-group and is thus clearly recognizable from Q. subunicolor, Q. unicolor, Q. sundukovi and Q. balticus, in particular by having pale antennomeres $1-3$. It is very similar to Q. molochinus and Q. meridiocarpathicus, but it is often paler than these, with elytra and appendages yellowish red compared to brownish red, and abdomen brown compared to dark brown. For confident identification genitalia should be checked as some individuals of Q. molochinus and Q. meridiocarpathicus can have similar external appearance. The aedeagus of Q. vicinus is distinguished from Q. molochinus and Q. meridiocarpathicus by the absence of a C -sclerite in the internal sac, and by the paramere with blunt apical hook oriented away from the median lobe (best seen in lateral view). Quedius vicinus is recognized from some similarly looking sympatric members of the subgenera Microsaurus and Raphirus, such as Q. suramensis - with which it has long been confused (see comments) - by the entire labrum and clearly parallel-sided abdomen.
Synonymic notes. Gusarov (1993) designated a lectotype for Q. vicinus and clarified the identity of the species. Also he examined the female holotype of Q. libanicus Coiffait, 1954 described from 'Lenkoran' in Azerbaijan (see BонÁČ (1988) for details about this locality) and synonymized it with Q. vicinus. Our data fully corroborate the synonymy of Q. vicinus and Q. libanicus.

The identity of Q. vicinus was confused for a long time since Hochнuth (1849) misidentified Q. vicinus as Q. (Raphirus) suramensis Eppelsheim, 1880. This led to
confusion of the two species from different subgenera of Quedius, clarified by Gusarov (1993). Both species still remain confused in many collections although they are easily distinguished (see Differential diagnosis).
Bionomics. Quedius vicinus is mainly found near bodies of water like streams, rivers, lakes, etc., where it is collected in litter and under rocks. In an arid region, this maybe the only suitable microhabitats. It has also been found in caves (Coiffait 1955, as Q. libanicus), although this is most likely accidental, as nothing suggests that it is connected to these.
Distribution. Quedius vicinus is found from central southern Anatolia across eastern Transcaucasia and most of the northern part of the Middle East into southern Central Asia (Fig. 20). It extends into the Levant region including the island of Cyprus, but does not go into the Nile delta. It is unclear to what extent it occurs in Transcaucasia, where it may only penetrate into the eastern valleys along the west Caspian Sea coast. The species continues into Iran and Afghanistan, as well as to Middle Asia where it is only known from one locality in Kazakhstan (Salnitska \& Solodovnikov 2018a).

Quedius pallipes-group

Diagnosis. Medium sized species with mostly brown, light brown to reddish elytra and appendages, rarely with darkened elytra. Eyes small, temples large, distance between temporal puncture and posterior margin of eye equals the diameter of the puncture; frons without additional setiferous punctures (Fig. 6F). Scutellum punctate and pubescent. Pronotum with punctures in posterior part of sublateral row. Palearctic origin.

Quedius hispanicus Bernhauer, 1898

(Figs 1, 2D, 3, 9A, B, 14C, 19)
Quedius hispanicus Bernhauer, 1898: 341 [Type locality: Cartagena und Cadix in Spanien] stat. rev.
Quedius cobosi Coiffait, 1964: 293 [Type locality: Espagne: Province de Almeria, Seron], syn. nov.
Quedius hammianus Sharp, 1911: 57 [Type locality: Anglia: Deal, Strood, Lymington, and Hayling Island], syn. rev.
Quedius rufulus Blümml, 1898: 216 [Type locality: Spanien, Granada], syn. rev.
Quedius secundus Last, 1952 [Type locality: Studland, Dorset; Mudeford, Hampshire; Chichester], syn. rev.

References. Fauvel (1865): 16 (synonym of Q. molochinus); Kraatz (1867): 414 (synonym of Q. molochinus); Ganglbauer (1895): 403 (synonym of Q. molochinus); Bernhauer (1900): 46 (distribution); Porta (1907): 129 (synonym of Q. molochinus); Gridelli (1924): 81 (subspecies of Q. molochinus; characters); Scheerpeltz (1933): 1457 (synonym of Q. picipennis); MÉQuignon (1937): 3 (as Q. molochinus pallipes); KORGE (1960b): 69 (synonym of Q. pallipes); COIFFAIT (1961): 56 (characters and distribution); (1978): 196 (characters); HANSEN (1962): 319 (characters and distribution); Smetana (1962a): 134 (characters); (1963): 39; (1970): 61 (distribution); LAST (1963): 45 (synonym of Q. simplicifrons); LOHSE (1964): 211 (characters and distribution); HORIon (1965): 276 (distribution); Bordoni (1976a): 100 (synonym of Q. pallipes); POPE (1977): 31 (distribution); LuCht (1987): 109 (distribution); Lohse \& Lucht (1989): 172 (distribution); Israelson (1990): 3 (distribution); Borges (1990): Table II (distribution); Welch (1993): 229 (ovariole number and ovary structure); Outerelo et al. (1995): 80 (distribution; as Q. pallipes).

Type material examined．Quedius cobosi：Paratype：§（MNHN）， labelled：＂PARATYPE［red label］／Quedius cobosi Coiff．H．COIFFAIT det． 1964 ／Laujar Almeria－España A．Cobos coll．＂
Additional material examined．DENMARK：Lakolk，［55．14，8．49］， debris on beach，1．XI．2013，leg．J．Pedersen \＆A．Brunke（1 NHMD）； Skallingen，［55．50，8．25］，17．X．1959，leg．F．Bangsholt（2 ふ入 NHMD）． GERMANY：Archsum，［Sylt］，［54．87，8．39］，IX． 1901 （1 SDEI）；Insel Borkum，［53．58，6．66］，12．VIII．1937，leg．Struse（2 $+q 4$ đ入 NMW）；N Dagebüll，Nordfriesland，54．7361，8．7094，salt pasture among stones and clay on dam，25．VIII．2017，leg．Wrase \＆Laser（1 đ cSch）；Memmert， Juist，［53．64，6．88］，13．VIII．1917，leg．Alfrum（1 SDEI）．FRANCE： Bordeuax，St．Louis，［44．94，－0．52］，22．II． 1964 leg．C．Jeanne（1 cBor）； Camargue，Etang du Fangassier，［43．42，4．63］，20．V． 1994 salt marsh，leg． Schülke \＆Grünberg（ 1 § cSch ）；Sainte Marie la Mer，［42．72，3．03］， 28．IV．1955，leg．J．T．Skovgaard（1 \uparrow NHMD）．PORTUGAL：Lissabon， ［38．76，－8．87］，leg．Von Heyden（1 2 ¢ \uparrow SDEI）；Lusitania，Lissabon， ［38．76，－8．87］，IV．－V．1910，leg．A．Schartzmayr（ 1 § $1 \nrightarrow$ SDEI）．Azores： Faial．Baia da Areia das Fontes 1 km N of Praia do Norte，［38．61，－28．74］， under stones，grassy ground，near rocky shore，2．IV．1957，leg．Brinck and Dahl（ 5 qo MZLU）；Faial，Caldeira，［38．58，－28．71］，10．IV．1957．leg． Brinck and Dahl（ 3 甲q MZLU）；Faial，Horta，Porto Pim．，［38．52，－28．62］， sandy ground，7．IV． 1957 leg．Brinck and Dahl（ 1 Q MZLU）；Faial．Nasce Agua 3 km S of Cedros，［38．60，－28．68］，ravine，under stones，5．IV．1957， leg．Brinck and Dahl（ $1 \delta^{\lambda}$ MZLU）；Faial，Praia do Almoxarife，［38．55， －28．61］，sandy grassy ground，under stones，31．III．1957．leg．Brinck and Dahl（1 \uparrow MZLU）；São Miguel，Atalhada，［37．74，－25．58］，natural forest， 4．IX．1999，leg．H．Enghoff（ 2 q q NHMD）．Madeira：Campanario， Fontes，［32．69，－17．01］，1200－1400m，16．IX．2014，leg．Kleeberg（1 ठ
 MZLU）；Pico do Castelo，［33．08，－16．33］，17．19．V．1977，leg．Palm（2 đ̂ठ MZLU）；Terreiro da Luta，［32．68，－16．91］， 850 m ，stream，20．IV．1957， leg．Brinck and Dahl（ $1 \delta^{\top}$ MZLU）．SPAIN：Alicante，Orihuela，［38．08， －0．94］，20．IV．1997，leg．Lauffer（2 MNCN）；Altea，Rio Algar，Alicante， ［38．61，－0．05］，27．II．1999，leg．Wrase（1 § cSch）；Aranjuez，Madrid， ［40．02，－3．59］， $520 \mathrm{~m} 3 .-4 . V .1988$ ，leg．Feller（ 3 \＆+cSch ）；Arroyo de Jurnadiel，S Brozas，Cáceres，［39．56，－6．81］， 325 m，20．VI．1991，leg． Wrase（1 ô cSch）；Ávila，Avila，［40．65，－4．68］，leg．Sanz（3 MNCN）； Badajoz：Aljucen，［39．04，－6．33］，leg．Pacheco（1 MNCN）；Boadilla del Monte，NW Madrid，［40．41，－3．88］，6．VII．1996，leg．D．Wrase（1 ठ cSch）； Cabo de Gata，SE Almeria，36．7908，－2．2513，coastal area，5．IV．2012， leg．T．Wolsch（ $1 \not+\mathrm{cSch}$ ）；Caboalles［de Abajo］，［42．95，－6．37］，leg． Paganetti（1 q SDEI）；Cádiz，［36．53，－6．22］，16．I．1894，leg．Navarro（2 MNCN）；Cádiz，Algeciras，［36．16，－5．43］，leg．Arias（1 MNCN）；Cádiz， Vega del Barbate，Vejer de la Frontera，［36．25，－5．95］，leg．De Quirós（1 MNCN）；Cornudilla，［42．68，－3．42］，13．IX．1962，leg．J．T．Skovgaard（1 ô 1 ¢ NHMD）；Cuenca，Uclés，［39．98，－2．86］（2 MNCN）；Guipúzcoa， Arechavaleta，［43．03，－2．51］，leg．Antoniol（1 MNCN）；Guipuzcoa，Irun， Jaitzubia，［43．34，－1．82］，10．V．2006，leg．Anichtchenko（ $1 \delta 1$ Q NHMD）； Huelva，Cala，［37．97，－6．31］，leg．C．Bolivar（1 MNCN）；Jáen Mengibar， Rio Guadalquivir，［37．98，－3．79］，330m，16．VI．1991，leg．Wrase（1 ठ cSch）；La Coruña，Coruña，［43．36，－8．4］，leg．Ricol（2 MNCN）；La Coruña， Villa Rutis，［43．28，－8．38］，VII．1908，leg．Bolivar（2 MNCN）；Laguna de Ruiz Sánchez，N Osuna，Sevilla，［37．41，－5．09］，26．V．1991，leg．Wrase（1 §cSch）；Los Guajares，Andalusien，36．8174，－3．5546，quarry，6．IV．2012， leg．T．Wolsch（ $1 \delta \mathrm{cSch}$ ）；Madrid，Escorial［40．57，－4．11］（1 MNCN）； Madrid，Torrelaguna．［40．82，－3．53］，leg．F．Beltran（1 MNCN）；Madrid， Viñuelas［40．79，－3．34］（1 MNCN）；Maranchon，Guadalajara，［41．04， －2．20］，24．XI．2005，leg．Anichchenko（1 ${ }^{\lambda}$ NHMD）；Murcia，Cartagena， ［37．62，－0．99］，leg．S．Gomez（1 MNCN）；Palencia，［42．01，－4．52］，leg． Paganetti（1 SDEI）；Palmones，Cádiz，［36．17，－5．43］，29．V．1991，leg． Wrase（1 §cSch）；Quero，Toledo，［39．51，－3．24］，8．III．1999，saline，leg． D．W．Wrase（ 1 § cSch）；Serrania de Ronda，Málaga，［36．74，－5．17］， 11．VI．1991，leg．Wrase（ 1 ठ cSch）；Sitges，［41．23，1．84］，22．X． 1922 leg．W．Liebmann（ 1 q SDEI）；Toledo，Nahalhermosa，［39．63，－4．47］， 27．VII． 2007 （ 1 § NHMD）；Tres Cantos，［40．60，－3．70］，29．－30．II．2000， leg．Anichtchenko（ 1 \＆NHMD）．Mallorca：Palma，［39．56，2．65］， IV．1957，leg．T．Palm（1 \uparrow MZLU）；Rabassa，［39．54，2．69］，leg．Briet（3 む̃o 1 q NMW）；Valldecousa，［39．71，2．62］，15．－20．IV．1957，leg．T．Palm $\left(1 \delta^{\lambda} 3 q \nmid\right.$ MZLU）．Canary Islands：Gran Canaria：Las Lagunetas， ［28．01，－15．57］，22．XI．1988，leg．G．Gillerfors（ 1 q MZLU）．Tenerife： Anaga Mountains，nr．Cruz del Carmen，［28．53，－16．27］，14．VI．1992，leg．

Hieke \＆Wendt（ $1 \not \subset \mathrm{ZMHB}$ ）；Cumbre Dorsal Esperanza－Forest，［28．38， －16．44］，1250m，13．IV．1992，leg．Zerche（1 \uparrow SDEI）；Erjos env．，［28．32， －16．81］， 1100 m，7．XII．2004，leg．Skoupý（1 q cSch）；Genovés，［28．36， －16．74］，400m，9．VI．1989，leg．Felies（ 1 ठ cSch）；La Esperanza，［28．44， －16．37］，1200m，18．VI．1992，leg．Hieke \＆Wendt（2 ${ }^{\text {ō }}$ T ZMHB）；Orota－ va，valley Aguamansa，［28．36，－16．49］，1115m，25．XII．1995，leg．Stüben \＆Bahr（1 \uparrow SDEI）；Nr．Orotava，［28．35，－16．51］，1400m，19．VI．1992， leg．Hieke \＆Wendt（ $2 \widehat{\delta} \widehat{\delta} 1 q$ ZMHB）；Puerto de la Cruz env．，［28．36， －16．52］，300m，20．II．－5．III．2004，leg．E．Hajdaj（1 ठ cSch）；Teno Alto， San Jeronimo，［28．34，－16．87］，800－900 m，20．I．1999，leg．G．Zappi（2 ठో $1 q$ cBor）．UNITED KINGDOM：England：Chichester Harbour，

Redescription．Measurements $\widehat{\widehat{ } \hat{} 1}(\mathrm{n}=6)$ ： $\mathrm{HW}=1.62-$ 1.76 （1．69）； $\mathrm{HL}=1.47-1.49$（1．48）；HL／HW 0．86－0．92 （0．88）； $\mathrm{PW}=2.22-2.29$（2．25）； $\mathrm{PL}=2.07-2.22$（2．16）； PL／PW 0．93－0．97（0．96）；EW＝2．27－2．49（2．37）；EL＝ 2．20－2．33（2．26）；EL／EW 0．92－1．00（0．96）；EL／PL 1．01－ 1.09 （1．05）；PW／HW 1．49－1．56（1．52）；forebody length 5．76－6．02（5．90）．q ㅇ $(\mathrm{n}=4): \mathrm{HW}=1.58-1.73$（1．66）； $\mathrm{HL}=1.38-1.53$（1．46）；HL／HW 0．87－0．89（0．88）；PW＝ 1．96－2．27（2．16）；PL＝1．91－2．11（2．05）；PL／PW 0．93－0．98 （0．95）； $\mathrm{EW}=2.22-2.51$（2．42）； $\mathrm{EL}=2.11-2.42$（2．29）； EL／EW 0．91－0．96（0．95）；EL／PL 1．08－1．15（1．12）；PW／ HW 1．42－1．52（1．48）；forebody length 5．40－6．07（5．80）．

Medium to large sized species；body black to brown （Figs 9A，B）．

Head black，distinctly transverse，eyes medium size （EyL／TL：1．88－2．06（1．94）），microsculpture of transverse waves，no interocular punctures between anterior frontal punctures；antennae pale．

Thorax：pronotum dark brown to brown，slightly wider than long，clearly wider than head，with microsculpture of transverse waves，three punctures in dorsal row，sublateral row of pronotum with a cluster of one to three punctures situated slightly anterior of the anterior most puncture of the dorsal row；scutellum with fine setiferous punctures and with wavy to meshed microsculpture；elytra usually light brown to brown，occasionally black with paler suture and posterior margin，rarely completely black，relatively long， uniformly pubescent，quadrate or slightly wider than long， slightly longer than pronotum；legs pale，except inner face of tibia darkened．

Abdomen black to dark brown and slightly iridescent， tergites uniformly punctured，with slight iridescence．

Male．Aedeagus（Fig．14C）：paramere elongate，narrow， lanceolate with narrowly slightly asymmetrical apical portion exceeding apex of median lobe，with numerous sensory peg setae forming two lateral longitudinal groups connected subapically；median lobe with sides of apex folded into distinct tooth situated at proximal part of fold； internal sac with a pair of very long medial sclerites，and with a pair of globular sclerites．
Differential diagnosis．Quedius hispanicus can be distin－ guished from all species of the Quedius s．str．except Q ． pallipes，by a cluster of $1-3$ additional setiferous punctures in the posterior part of the sublateral row of the pronotum． They are very rarely missing on both sides of the pronotum in Q ．hispanicus．It can be distinguished from Q ．pallipes only by male genitalia characters：by a slightly narrower and，in medial section，more attenuate paramere；and by
a median lobe with sides of apex each folded into distinct tooth, tooth situated at base of the fold.
Synonymic notes on Q. pallipes, Q. hispanicus, Q. simplicifrons, Q. cobosi, and Q. levasseuri. Lucas (1849) described Quedius pallipes from the coastal town of Philippeville [now Skikda], Algeria. Fairmaire (1862) described Quedius simplicifrons as a very similar species from the French island of Corse. Bernhauer (1898) described Quedius hispanicus, a species very similar to these, from the Spanish coastal towns of Cartagena and Cadiz. These three species have been mixed up, probably due to their very similar habitus, rendering their individual distributions unclear. Coiffait (1961) stated that Q. pallipes was restricted to North Africa and hypothesized that Q. simplicifrons - with Q. hispanicus as a junior synonym - could be a European subspecies of Q. pallipes without formally downgrading Q. simplicifrons to subspecific rank. Subsequently, some authors (HANSEN 1962, Lohse 1964, Horion 1965, Smetana 1970, Bordoni 1976, Welch 1993) have treated Q. hispanicus as a valid species for Western European specimens, while others continued to consider it a synonym of Q. simplicifrons (Pope 1977, Coiffait 1978, Ciceroni \& Zanetti 1995, Solodovnikov 2012). Korge (1962b) mentioned specimens from Southern Italy and North Africa as conspecific with Q. pallipes. He also reported that these were collected at higher altitudes (up to just above 1000 m) very far from the coast. Coiffait (1964) further described two new species based mainly on genitalia differences of the males, Quedius cobosi Coiffait, 1964 from Seron in Spain, and Quedius levasseuri Coiffait, 1964 from Corse, both similar to Q. pallipes and Q. simplicifrons/Q. hispanicus. Quedius cobosi was characterised by the presence of numerous small setae on the edge of the paramere, while Q. levasseuri was described as having paler sutural and elytral posterior margins as well as a differently shaped aedeagus, compared to Q. pallipes and Q. simplicifrons. This history implies several species--group taxa of uncertain status, distribution and habitat preference that are similar to Q. pallipes and co-occur in the West Mediterranean. Studying a broad sample of specimens from that area, we found only two morphotypes, which differ only in the structure of the aedeagus. The first is found along the European Atlantic Coast, including Southern UK, Canaries, Madeira, Azores and inland in southern France and on the Iberian Peninsula (Figs 14C, 19). These areas include the type localities of Q. hispanicus and Q. cobosi (Fig. 19). The second is found in mainland Italy, on Corse and Sardinia, and in North Africa at both coastal and higher elevation sites (Figs 14D, 19). These areas include the type localities for Q. pallipes, Q. simplicifrons, and Q. levasseuri. There is no transition between the aedeagi of both types. The steep cliff shoreline between Nice, France and La Spezia, Italy may be unsuitable for these species and may represent a barrier for their dispersal. As the morphological difference between both types of genitalia is clear, and in agreement with the type localities, we here propose to use Q. hispanicus for the Iberian and Atlantic coast species
(type 1) and Q.pallipes for the Italian and North African species (type 2) (Figs 14, 19). Quedius cobosi syn. nov. is synonymized with Q. hispanicus.

However, barcodes from specimens across the entire distribution of both types 1 and 2 show very little variation, with no clear clustering corresponding to both genitalia types (Fig. 3). A rather uniform genetic barcode among specimens morphologically corresponding to both Q. hispanicus and Q. pallipes (only 0.5% divergence, Table 2) suggests that there may be some level of mitochondrial introgression between these species. External factors such as past or present infections by endosymbionts such as Wolbachia (e.g. Kondandaramaiah et al. 2013) cannot be ruled out as an explanation either. This should be explored more thoroughly for example with the use of nuclear genes or genomics.

The original descriptions and distribution records of Quedius hammianus Sharp, 1911 and Quedius secundus Last, 1952, both described from the UK, match the morphology and the ecological association with coastal sites of Q. hispanicus. Quedius rufulus Blümml, 1898, described from Granada in Spain as having darker base of the antennae, most likely represents a variant of Q. hispanicus. All three species were hitherto in synonymy with Q. simplicifrons. Under the revised concept of the Q. pallipes-group, we synonymize them with Q. hispanicus.
Bionomics. Quedius hispanicus mainly occurs in saline habitats along the Atlantic coast, such as salt marshes and the banks of estuaries in flood debris. Further south in the Iberian Peninsula and southern France the species seems to be present inland in non-saline habitats. Inland it occurs in the debris along the banks of creeks and rivers. For example, AKH has collected it in the debris near streams and rivers in the Extremadura region (Fig. 2D) and also in the flood debris on a salt marsh near the coast in southern Denmark. Most records are from low elevations, except a few on Madeira and the Canary Islands, where Q. hispanicus is found up to 1400 m .
Distribution. Quedius hispanicus occurs along the Atlantic coast from southern Denmark to the Iberian Peninsula where it continues to the French Mediterranean coast, with one unverified report from the northwestern Italian coast (Fig. 19). In the Iberian Peninsula it occurs inland along most rivers and creeks. It also occurs on the Azores (Faial), Madeira (Madeira and Porto Santo), the Canaries (Tenerife and Gran Canaries) and Mallorca.

Quedius pallipes Lucas, 1849

(Figs 1, 3, 9C, 14D, 19)
Quedius pallipes Lucas, 1849: 113 [Type locality: Algeria: environs de Philippeville]
Quedius leonhardi Bernhauer, 1914: 67 [Type locality: Gargano], syn. rev. Quedius levasseuri Coiffait, 1964: 293 [Type locality: Corse, Porto-Vecchio], syn. nov.
Quedius sardous Gridelli, 1924: 81 [Type locality: Sardegna: Cagliari, Assemini, Decimo, Golfo Aranci, Gonnesa], syn. rev.
Quedius simplicifrons Fairmaire, 1862: 580 [Type locality: Corse], syn. nov.
References. FAUVEL (1869a): 487, (1869b): 151, (1902): 115 (distribution; synonym of Q. molochinus); Porta (1907): 130 (distribution; synonym
of Q．molochinus）；MÉQUIGNON（1937）： 3 （distribution；subspecies of Q．molochinus）；PAULiAN（1941）： 268 （larval characters；variety of Q ． molochinus）；Last（1952）（characters and distribution）；KORGE（1960）： 53 （characters）；（1962b）：335，（1973）： 275 （distribution）；COIFFAIT（1961）： 55 （characters）；（1978）： 196 （distribution）；PALM（1963）： 142 （characters）； Scheerpeltz（1965）：407；（1965b）： 511 （distribution）；Bordoni（1974）： 12；（1976）： 100 （characters and distribution）；1976b： 102 （characters）； Ciceroni \＆Zanetti（1995）： 32 （distribution）．
Type material examined．Quedius leonhardi：Holotype $\widehat{\delta}(\mathrm{FMNH})$ ， labelled：＂Monte Gargano 6．25．5．1907 legit．M．Hill Coll．O．Leonhard／ Leonhardi Brh．Typus unique／Chicago NHMus M．Bernhauer Collection ／In euparal／D．Drugmand det．， 1994 Quedius（S．str．）molochinus（Grav．） ／FMNHINS 3982385 FIELD MUSEUM Pinned／PHOTOGRAPHED S．Ware 2020 Emu catalog＂．
Additional material examined．ALGERIA：Alger［Algiers］，［36．71， 3．07］，2．－10．V．1972，leg．M．Dvořák（1 đ MCZ）；Bona［Annaba］，［36．89， 7．76］，leg．Meinert（ 1 q NHMD）；Mandoura，Boumerdes，［36．83，3．66］， 17．VI．1988，leg．Sama（ 1 ठ cSch）．CHAD：Tibesti，Distr．Emi，Miski， ［20．18，17．94］，29．X． 1885 （ 1 JMW）．FRANCE：Corse：Ajaccio， ［41．93，8．73］（1 NHMD）；Aleria，［42．11，9．49］，1905，leg．O．Leonhard （1 đ 1 \＆SDEI）．ITALY：Aspromonte，Samo，［38．07，16．05］，250m， 12．III．2000，leg．F．Angelini（1 \＆NHMD）；Barletta，［41．32，16．27］， 14．V．1962，leg．J．T．Skovgaard（ 4 む̃ 3 of NHMD）；Calaria，Locri， ［38．25，16．28］，3．V．1975，leg．R．Mourgua（1 $\uparrow \mathrm{cSch})$ ；Canale，［44．79， 7．99］，leg．Paganetti（ 2 \＆\uparrow SDEI）；Gargano，［41．71，15．72］，leg．L．S． Giovanni（1 $\&$ NHMD）；Lago S．Floriano，Toscana，［42．42，11．35］， 30．V．2002，leg．Bordoni（ 1 § 1 q cBor）；Lido di Roma，［41．73，12．28］， 17．－18．VI． 1939 Palm（ 1 ¢ MZLU）；Monti Aurunci，Itri，［41．31，13．49］， 25．IX．1973，Leg．M．Zampetti（1 \uparrow cBor）；Portonaccio，Lazio，［42．02， 12．39］，9．IX．1932，leg．G．Sacca（ 6 甲 $甲$ cBor）；Puglia，Riserva Naturale Le Cesine，［40．35，18．33］，11．VI． 1999 leg．F．Angelini（2 q \＆NHMD）； Roseto Capo Spulico，［39．98，16．61］，10．XII．2000，leg．F．Angelini（1 q NHMD）．SARDINIA：Assuni，［39．87，8．94］，leg．Krausse（1 q SDEI）； Cagliari，［39．21，9．11］，29．I．1967，leg．S．Riese（3 q \＆cBor）；Lago Omo－ deo，Oristano，［40．13，8．92］，2．V．1979，leg．S．Riese（1 ठcBor）；Oristano， ［39．88，8．58］，21．IV－7．V．1978，leg．S．Riese（ $1 \delta^{\lambda} 1$ cBor）；Ottana，［40．23， 9．04］，14．V． 1976 （2 + ¢ $¢$ cBor）；Sant＇Antioco，［39．06，8．45］，IV．1984， leg．Bordoni（ 1 q cBor）；Sorgono，［40．02，9．11］， 1912 leg．Krausse（ 1 § SDEI）；Stagni Cobras，Oristano，［39．91，8．49］，19．IV．1971，leg．Visua（1 q cBor）．Sicily：Catania，［37．51，15．09］，IV．1965，leg．Fello（1 cBor）； Enna，［37．56，14．28］，1．V． 1990 leg．Roland（1 ơ NHMD）；Gibilmanna， ［37．98，14．01］，800m 23．IV．1981，leg．T．Palm（1 q MZLU）；Marausa， ［37．95，12．5］，8．III．1982，leg．Alique（1 © cBor）；Stracusa，［37．06，15．28］， 18．VII．1969，leg．Alraub（ $1 \bigcirc 4$ \＆cBor）．MOROCCO：Al Hakkama， ca． 18 km SE Tanger，35．6377，-5.6841 ，fields，fallow，pastures， 100 m ， 26．II．2004，leg．D．W．Wrase（ 1 q cSch）；Bouznika，［33．81，－7．14］， 12．III． 1974 （ 1 § cBor）Douyiet，［34．04，－5．12］，8．IV．1974（ 1 § 1 q cBor）； Fouarat，Rabat，［34．25，－6．52］，1932，leg．A．Théry（1 NMW）； 10 km N Mdiq，Tetouan，35．7182，-5.3427 ，brackish wetland under plants in soil， 27．II．2004，leg．D．W．Wrase（ 1 cSch ）；Mohammedia，Oued Mellah， Chefchaouen，33．71，－7．33，stony slopes and bushes，4．II．2003，leg．D．W． Wrase（ $1 \not q \mathrm{cSch}$ ）；Rif Mts．El－Malha， 19 km SE Bab－Taza，Chefchaouen， 34．9801，－5．0791，stony fallen land，ca． $440 \mathrm{~m}, 29 . \mathrm{II} .2004$ ，leg．D．W．Wra－ se（ $1 \not q \mathrm{cSch}) ; 2 \mathrm{~km}$ W Tetouan，［35．55，－5．45］，16．II．1999，leg．Wrase（1 $q \mathrm{cSch})$ ．TUNISIA：El Besbassia， 10 km SW Hammamet，Sousee，［36．35， 10．52］，28．XI．－6．XII．1995，leg．D．W．Wrase（1 §c cSch）；El Kantaoui， 12 km NW Sousee，［35．89，10．58］，25．－30．XI．1992，leg．D．W．Wrase（1 ठ cSch）；Gabés，［33．88，10．12］，30．V．－5．6．1969，leg Palm（1 ठ̉ MZLU）．
Redescription．Measurements $\widehat{\jmath}$（ $\mathrm{n}=4$ ）：HW＝1．64－ 1.73 （1．69）；HL＝1．47－1．51（1．48）；HL／HW 0．86－0．89 （0．88）；PW $=2.16-2.31$（2．22）； $\mathrm{PL}=2.04-2.22$（2．11）； PL／PW 0．93－0．96（0．95）；EW＝2．33－2．51（2．39）；EL＝ 2．16－2．36（2．23）；EL／EW 0．97－1．10（1．06）；EL／PL 0．97－ 1.10 （1．06）；PW／HW 1．47－1．55（1．50）；forebody length 5．69－6．00（5．83）．와 $(\mathrm{n}=6)$ ：HW＝1．62－1．69（1．67）； $\mathrm{HL}=1.36-1.47$（1．41）；HL／HW 0．83－0．87（0．84）； $\mathrm{PW}=$ 2．13－2．27（2．18）；PL＝1．98－2．04（2．03）；PL／PW 0．90－0．96 （0．93）； $\mathrm{EW}=2.33-2.47$（2．41）； $\mathrm{EL}=2.13-2.29$（2．22）；

EL／EW 0．90－0．94（0．92）；EL／PL 1．07－1．12（1．10）；PW／ HW 1．45－1．62（1．54）；forebody length 5．49－5．73（5．66）．

Medium to large sized species；body black to light brown（Fig．9C）．

Head black，distinctly transverse，with eyes of medium size（EyL／TL：1．76－2．20（1．97）），microsculpture of tran－ sverse waves，no interocular setiferous punctures between anterior frontal punctures；antennae pale．

Thorax：pronotum paler dark brown to brown，slightly wider than long，clearly wider than head，with microsculp－ ture of transverse waves，three punctures in dorsal row， sublateral row of pronotum with a cluster of one to three punctures situated slightly anterior of the anterior most puncture of the dorsal row．Scutellum with fine setiferous punctures and with wavy to meshed microsculpture；elytra usually light brown to brown，occasionally with paler sutu－ re and posterior margin，rarely completely black，relatively long，uniformly pubescent，slightly wider than long，of equal length or slightly longer than pronotum；legs pale， except inner tibia surface which is darkened．

Abdomen black to dark brown and slightly iridescent， tergites uniformly punctured，with slight iridescence．

Male．Aedeagus（Fig．14D）：paramere elongate，narrow， lanceolate with narrowly slightly asymmetrical apical portion exceeding apex of median lobe，with numerous sensory peg setae forming two subapical，lateral longitu－ dinal groups connected apically below apex；median lobe with sides of apex folded into distinct teeth situated at medial part of fold．Internal sac with a pair of distal，very long medial sclerites，and with a pair of globular proximal sclerites．
Differential diagnosis．Quedius pallipes is distinguished from other Quedius s．str．，except Q ．hispanicus by a cluster of $1-3$ additional setiferous punctures in the posterior part of the sublateral row of pronotum，which are very rarely missing．It can only be distinguished from Q ．hispanicus by male genitalia characters；paramere slightly wider and less attenuate in middle portion，median lobe with sides of apex each folded into distinct tooth，tooth situated at about midlength of fold．
Synonymic notes．See under Quedius hispanicus．Based on the type locality，we here propose to use the name Q ． pallipes for the Italian and North African species with the aedeagus type 2 （Figs 14，19）．Our examination of hundreds of specimens of the Q．pallipes－group across its full distri－ bution range showed that specimens from Corse－which matched the original description of Q ．simplicifrons－were conspecific with Q ．pallipes．Therefore，Q．simplicifrons Fairmaire，1862，syn．nov．described from Corse，is here synonymized with Quedius pallipes Lucas， 1849.

Quedius sardous Gridelli， 1924 from Sardegna was originally described as a variety of Q．picipennis［now Q．molochinus］．Following Coffart（1961），Q．sardous was considered to be an infrasubspecific form of Q ．sim－ plicifrons．Here we move Quedius sardous Gridelli， 1924 syn．rev．to synonymy with Quedius pallipes Lucas， 1849.

The original description of Quedius leonhardi Bern－ hauer，1914，a species described from Gargano in Italy and hitherto considered a synonym of Q ．molochinus
(e.g., Herman 2001), matches Q. pallipes, except for the missing puncture in the sublateral row of pronotum, usually present in Q. pallipes. However, we have seen specimens of Q. pallipes (earlier named as Q. pallipoides, see below) with this puncture missing, while neither the described coloration of Q. leonhardi nor its distribution in central Italy match what we know about Q. molochinus. Thanks to S. Ware and M. Turcatel of the FMNH we were able to study images of the type of Q. leonhardi (see supplementary Fig. S4), which confirmed that Q. leonhardi fits the concept of Q. pallipes. Therefore, Q. leonhardi Bernhauer, 1914, syn. rev. is here moved from synonymy with Q. molochinus (Gravenhorst, 1806) to synonymy with Q. pallipes Lucas, 1849.

Based on the original description of Coiffait (1964), and additional data by Bordoni (1976) and Coiffait (1978), Q. levasseuri, Coiffait 1964, known only from the type series from Porto Vecchio on the island of Corse, we suggest that the male holotype have a teratological aedeagus. The shape of its aedeagus, not seen in any other specimen from this relatively well collected region, is the only unique trait of Q. levasseuri, because we observed its other presumably unique characters, the pitchy black elytra with narrow reddish margins, in both Q. hispanicus and Q. pallipes. Based on our hypothesis about the teratological aedeagus, we propose to synonymize Q. levasseuri, syn. nov. with Q. pallipes, which is also known from Corse.
Bionomics. Quedius pallipes is found at elevations from sea level to ca. 1000 m , in wet debris and under rocks, mainly near water sources. For example, based on examined specimen labels, it has been recorded in a brackish wetland under plants in soil, and on rocky slopes with bushes, both in interior Morocco. Based on records near coastal sites the species is most likely halotolerant.
Distribution. Quedius pallipes is distributed across northern Africa, the Italian Peninsula and the islands of Sicily, Sardinia and Corse (Fig. 19). In northern Africa it is found in Morocco, Algeria and Tunisia, mainly in the coastal regions of these countries, or near water sources inland. A single record from Tibesti in Northern Chad is doubtful, as it is based on an unclear label, which may refer to the small settlement of Miski in the Emi Koussi District. In the Italian Peninsula it is found everywhere except its northern mountainous parts.

Quedius molochinoides-group

Diagnosis. Species of medium to large size with two interocular punctures between anterior frontal punctures (Fig. 6G). Body dark, elytra and appendages variable in coloration, from completely dark to reddish-brown or light brown. Eyes medium sized, temples relatively large, with temporal puncture separated from posterior margin of eye by distance equivalent to diameter of this puncture. Scutellum punctate and pubescent. Restricted to the Nearctic Region.
Comments. The Nearctic Q. molochinoides-group currently includes five species of which four (Q. molochinoides, Q.
horni and Q. lanei, now also Q. altanai) are impossible to separate morphologically from each other without dissection of male genitalia. Only the northern Q. labradorensis can be confidently delimited within the group based on its larger size and pale basal three antennomeres. Our thorough examination of the entire group showed that Q. horni is most easily recognized based on the aedeagus. This species is now known from the Pacific Northwest, from Oregon to southern Alaska, including Vancouver Island and Haida Gwaii (most of ecoregion 7.1). Most specimens of this species were taken on coastal sites or inland near rivers and creeks to mid elevaton in the Cascades and Mount Olympia, suggesting its close association with wet habitats. Presumably this species is somewhat halotolerant. When specimens of what was known as Q. lanei, were closely examined morphologically, we found two distinct morphotypes distinguished by differences in male genitalia. Species from the eastern foothills of the Cascades, the Sierra Nevada and the Blue Mountains (ecoregions 6.2.8, 6.2.9, 6.2.12) represent a morphotype with a broader paramere and median lobe, the latter being acuminate near apex (Figs 16D, 17). This includes specimens from the Sierra Nevada (Nevada and California), which were earlier assigned to Q. molochinoides (e.g., Smetana 1971a). Specimens from the central and southern Rockies as well as western Sierra Madre (ecoregions 6.2.10, 6.2.13, 6.2.14, 6.2.15, 13.1.1) represent a different morphotype with a more slender paramere and median lobe, the latter being non-acuminate (Figs $16 \mathrm{C}, 17$). COI sequences of both morphotypes showed that four specimens corresponding to the first morphotype from Lake Tahoe in Nevada, Lassen National Forest in California, Gearhart Mountains in Oregon, and Strawberry Range in Oregon, formed a group, separate from the fifth specimen corresponding to the second morphotype (Fig. 4). The central-southern Rockies morphotype was only represented by a single incomplete sequence (407 bp) from Red Mountain Pass in Colorado. This sequence was over 6% divergent from all Q. lanei sequences, but only 1.2% from Q. molochinoides-group 3 (see below), from which it is morphologically distinct (Table 2). Based on the discovered congruence between the morphological and molecular groups, as well their obvious allopatry (Fig. 21), we suggest that Q. lanei is a species restricted to the eastern foothills of the Cascades, Sierra Nevada and Blue Mountains, whereas a new species, Q. altanai sp . nov., is described for specimens from the central and southern Rockies, as well as western Sierra Madre (teal in Fig. 21). Quedius molochinoides showed genetic subclustering of COI barcodes into three distinct BINs (Table 2). One BIN (Q. molochionides-group 1) was restricted to the Canadian national parks of Banff and Waterton (ecoregion 6.2.4), an area delimited by the Rocky Mountains Trench to the West, where it is replaced by another $\operatorname{BIN}(Q$. molochino-ides-group 2), and the Canadian Plains to the east, which lack Q. molochinoides. In the north, this group is replaced by Q. molochinoides-group 3 from Jasper National Park, indicating a divide between groups 1 and 3 around Snow Dome peak and the Arctic Divide. One potential split is the Athabasca River Valley, that may have acted as a

post-glacial distribution barrier combined with latitudinal climatic gradients. The extent of the distribution of group 1 southwards is still unknown, but it may very well extend into northern-central Montana and Idaho (Figs 4, 22). The Q. molochionides-group 2 is confined to the Canadian Rockies west of the Rocky Mountains Trench (ecoregion 6.2.3) and towards the North continuing to the Pacific Coast in Alaska, to the Kenai Peninsula northwards (ecoregion 6.1 and northern part of 7.1). The Q. molochinoides-group 3 is present from Becharof Peninsula in the west across the North American Taiga to glacial refugia of New England, Quebec and Newfoundland in the East (ecoregions 4, 5, and partly 6.1 and 7.1). Our results show that apparently these three molecular BINs within Q. molochinoides have distinctly allopatric distributions and thus potentially have limited gene flow among each other. However, since we have been unable to find morphological characters clearly separating them, for now we refrain from describing them as species. If future work shows that these are in fact distinct, then they may be described as separate species. Our results add further information to the complex diversification patters found in the Canadian Rocky Mountains as illuminated through a series of studies on the Spruce Budworm complex (Lepidoptera: Tortricidae: Choristoneura) (Lumley \& Sperling 2010, 2011; Brunet et al. 2017, Dupuis et al. 2017). Similar to these studies, genome-wide sequencing may be needed to confidently resolve the population/species boundaries and distribution patterns in the Q. molochinoides group.

Quedius altanai Hansen \& Brunke, sp. nov.

(Figs 1, 4, 10C, 16C, 17, 21)
Quedius lanei (misidentified): Korge (1962b): 333 (characters, notes); Smetana (1971a): 144 (characters and distribution); Smetana (1971b): 1844 (collecting notes and distribution); Smetana (1976a): 174 (distribution).

Type material. Holotype $\widehat{\lambda}$ (CNC), labelled: "Cache Co., Logan Cn., 5300', Spring Hollow, 15.VII.1981, J.M. Campbell / sifting pile of squirrel midden / CNC 1017210 / Holotype Quedius altanai Hansen \& Brunke, sp. Nov des. A. Hansen \& A. Brunke 2021". Paratypes: USA: Arizona: Apache Co., Chuska Mountains, Wagonwheel Campground, [36.45, -109.17], 2500 m , pine and fir 25.-27.VIII.1977, leg. S. Peck (1 CNC); Chuska Mountains, Wagonwheel Campground, [36.45, -109.17], 2250 m , sifted from moss, 12.VII.1976, leg. J.M. Campbell (1 CNC). Colorado: 6 mi S Molas Pass, [37.66, -107.7], $2895 \mathrm{~m}, 1 . \mathrm{VIII}$.1973, leg. J.M. Campbell (2 CNC); Red Mountain Pass near Silverton, [37.89, -107.71], $3505 \mathrm{~m}, 28 . V I I .1973$, leg. J.M. Campbell (1 CNC). Idaho: Bloomington Lake Wasatch Mts, [42.14, -111.57], $2500 \mathrm{~m}, 8 . \mathrm{VII} .1952$, leg. B. Malkin ($1 \delta^{\lambda}$ FMNH); Boise County, Sawtooth Region, Bull Trout Lake, 3.2km SW Highway 21, [44.3, -115.25], $2130 \mathrm{~m}, 6 . \mathrm{VI} .1989$, leg. A. Smetana (3 CNC); Custer County, Sawtooth Range Highway, 21 Banner Summit, [44.3, -115.23], 2190 m, 6.VI.1989, leg. A. Smetana (1 CNC); Custer County, Sawtooth Range, Stanley Lake, [44.24, -115.05], 1900 m, 8.VI.1989, leg. A. Smetana (5 CNC). New Mexico: Otero, 19. Mi S of Cloudcroft, [32.69, -105.72], IV.22.1972, C.W. \& L.B. O'Brien (1 σ^{1} CNC). Utah: Ashley National Forest, 12 km S Manila, Deep Creek, 40.8550, -109.7297, 2340 m , sifting litter and mushrooms, 30.VI.2015, leg. M. Schülke (1 ZMHB); Cache County, Logan Canyon, Spring Hollow, [41.75, -111.71], 1615 m , sifting, pile of squirrel midden, 15.VII.1981, leg. J.M. Campbell (3 CNC, 2 NHMD); Cache County, Logan Canyon, Spring Hollow, [41.75, -111.71], 1615 m, 15.VII.1981, leg. J.M. Campbell (4 CNC); Cache County, Logan Canyon, 2 km N Wood Camp, [41.75, -111.71], 1706 m , sifting, moss, 14.VII.1981, leg. J.M. Campbell (1 CNC); Lonesome Beaver, Henry Mountain, [38.1, -110.81],

25-26.VII.1968, leg. H.F. Howden (1 CNC); Mount Timpanegos, Wasatch Mountains, [40.39, -111.64], 5.VII.1935, leg. Van Dyke (2 CNC); Summit County, Bald Mount Pass, [40.68, -110.89], 3261 m, 11.VII.1981, leg. J.M. Campbell (2 CNC); Summit County, Whiskey Creek, Mile 39 Highway 150, Sulphur Campground, [40.79, -110.88], 2743 m, 11.VII.1981, leg. J.M. Campbell (2 CNC); Summit County, Wasatch National Forest, Beth Lake, [40.65, -110.96], 2895 m, 12.VII.1981, leg. J.M. Campbell (1 CNC). Wyoming: [Yellowstone] National Park, [44.63, -110.87], IV.1908, leg. Hubbard \& Schwarz (1 CNC). Wyoming USA, 26.VI.1956, leg. E. Suenson (2 NHMD).
Description. Measurements $\overbrace{}^{\lambda}(\mathrm{n}=1)$: $\mathrm{HW}=1.67 ; \mathrm{HL}=$ 1.49; HL/HW 0.89; PW = 2.20; PL = 2.07; PL/PW 0.94; $\mathrm{EW}=2.24 ; \mathrm{EL}=2.13 ; \mathrm{EL} / \mathrm{EW} 0.95 ; \mathrm{EL} / \mathrm{PL} 1.03 ; \mathrm{PW} / \mathrm{HW}$ 1.48; forebody length 5.69. q $\uparrow(\mathrm{n}=6)$: $\mathrm{HW}=1.56-1.67$ (1.60); HL = 1.20-1.42 (1.34); HL/HW 0.75-0.89 (0.84); PW = 1.96-2.24 (2.07); PL = 1.78-1.96 (1.86); PL/PW 0.87-0.95 (0.90); EW = 2.09-2.24 (2.18); EL = 1.96-2.16 (2.05); EL/EW 0.87-0.99 (0.94); EL/PL 1.04-1.14 (1.10); PW/HW 1.27-1.74 (1.51); forebody length 5.04-5.53 (5.25).

Medium sized species; body brown to black (Fig. 10C).
Head black, distinctly transverse, with eyes medium sized $(\mathrm{EyL} / \mathrm{TL}=1.61-2.07(1.90)$), microsculpture of transverse waves, with two interocular punctures between anterior frontal punctures (Fig. 6G); antennae and palpi dark with joints pale reddish, all antennomeres elongate, except the last and penultimate antennomere almost transverse.

Thorax: pronotum dark brown to black, slightly wider than long, clearly wider than head, with microsculpture of transverse waves, three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching just beyond first puncture of dorsal row; scutellum sparsely punctured and pubescent; elytra variable in coloration, from reddish brown, to almost yellowish pale, occasionally dark with lighter sutural margins, uniformly pubescent, with punctures clearly separated, slightly wider than long, slightly longer than pronotum; legs reddish brown with inner face of tibia and inner surface of femur darkened and tarsi paler.

Abdomen brown to black, tergites uniformly punctured, with clear iridescence.

Male. Aedeagus (Figs 16C, 17): Paramere lanceolate, rather slender, without clear basal attenuation, reaching apex of median lobe, with small sensory peg setae forming two irregular rows meeting in irregular cluster below apex; median lobe lanceolate, slender, continuously constricting towards pointed apex, on parameral side with two small teeth simply protruding outwards and slightly basad; internal sac with two larger oval and two smaller rounded internal sclerites.
Differential diagnosis. Quedius altanai can be distinguished from Q. laticollis and Q. strenuus by the presence of two additional setiferous punctures between the anterior frontal punctures. It can be distinguished from Q. labradorensis by the darker body and the clearly darkened basal three antennomeres. It can be distinguished from other members of the molochinoides-group (Q. horni, Q. lanei and Q. molochinoides) only by the male genitalia: by the slender paramere that is evenly narrowed from base to apex, and median lobe with an evenly narrowed apex and
two small subapical teeth pointing basad and often appearing as short carinae. However, the clearly allopatric distribution of Q. altanai with respect to all other species of the molochinoides-group makes such detailed examination for diagnostic purposes within the group largely unnecessary.
Bionomics. Quedius altanai prefers mountainous areas and occurs only at high elevations between 1600 and 3500 m . The habitat seems to be mainly moist debris, and under rocks in meadows or coniferous forests. Specimens from Red Mountain Pass were collected from under rocks near snowfields (Smetana 1976) and those from Lincoln National Forest, New Mexico were found in a meadow-like biotope, amidst coniferous forest under a piece of wood at a small creek (Smetana 1971). Other specimens have been reported from litter, moss, and squirrel middens mainly in coniferous forests.
Etymology. This species is dedicated to our great friend and colleague Aleš Smetana who has greatly advanced the study of the complex genus Quedius globally and who reviewed this paper. We are glad that Aleš saw it. Sadly, he recently passed away while this paper was still unpublished. We foresee large future taxonomic changes, when this huge genus will be split, inevitably following recent phylogenetic findings. So, this becomes a way to capture and eternalize his name within the core of the genus. The name is a combination the first part of the first name (al-) and the last part of the last name (-tana) given as a masculin eponym ($-i$).
Distribution. Quedius altanai is known from high elevation sites of the central and southern Rockies, as well as western Sierra Madre (Fig. 21). Its northernmost limit of the distribution is from middle Rockies, i.e. Central--Southern Idaho and Wyoming (ecoregion 6.2.10, 6.2.15). In the south it extends into the highest elevation sites of the Rockies (ecoregion 6.2.13 and 6.2.14) and interestingly into western Sierra Madre that often is represented by a different fauna (ecoregion 13.1.1). Westwards Q. altanai does not occur in the Cascades, Sierra Nevada or the Blue Mountains. There it is replaced by Q. lanei.

Quedius horni Hatch, 1957

(Figs 1, 4, 5, 10A, 16B, 17, 21)
Quedius horni Hatch, 1957: 216 [Type locality: Washington: Snohomish Co.: L. Ballinger]
References. Korge (1962b): 333 (characters, notes); Smetana (1965a): 39 (characters); (1971a): 146 (characters and distribution).

Material examined. CANADA: British Columbia: 20 mi . E. Hope, Manning Pk., [49.18, -120.97], ex river debris, 21.VI.1968, leg. Campbell \& Smetana (1 CNC); Tsawwassen, [49.01, -123.08], 19.V.1968, leg. Campbell \& Smetana (1 CNC). Haida Gwair: Queen Charlotte Island [Haida Gwaii], Skowkona Creek, 7.9km NW O. C. City, [53.33, -132.13], ex dung and carrion traps, 19-29.VII.1983, leg. J.M. Campbell (1 CNC); 7.9 km NW Queen Charlotte City, [53.31, -132.14], dung trap, 19-29. VII.1983, leg. J.M. Campbell (1 CNC). Vancouver Island: Mesachie Lake, Forest Experiment Station, [48.82, -124.13], 15-31.VII.1979, leg. I. Smith (2 CNC); Vancouver Island, [49.76, -125.46] (4 CNC). USA: Alaska: Auke Bay, 16.2 km N Juneau, [58.38, -134.65], sifting moss, 9.VI.1981, leg, Bright (1 CNC). Oregon: Blodgett, [44.59, -123.52], VI.1927, leg. Darlington (1 MCZ); Hood River County, 10 mi S Mount Hood at Clinger Springs, [45.4, -121.55], 1310 m, 8.VII.1978, leg. L. \& N. Herman (1 CNC); Mt. Hood, South Side, [45.29, -121.7], 7.VI.1927, leg. Darlington (1 MCZ). Washington: Olympic National Park, Hoh Ranger

Station, [47.85, -123.93], 182 m, 13.V.1968, leg. Campbell \& Smetana (1 CNC); Olympic National Park, 4-6 mi SE Soleduck Campground, [47.93, -123.77], 944 m, 15.VIII.1979, leg. J.M. \& B.A. Campbell (1 CNC).

Redescription. Measurements $\widehat{\jmath}$ ($\mathrm{n}=4$): HW $=1.64$ 1.69 (1.67); HL = 1.36-1.40 (1.39); HL/HW 0.82-0.84 (0.83); $\mathrm{PW}=2.02-2.22$ (2.13); $\mathrm{PL}=1.82-2.00$ (1.92); PL/PW 0.88-0.91 (0.90); EW = 2.11-2.31 (2.21); $\mathrm{EL}=$ 2.04-2.29 (2.11); EL/EW 0.88-1.01 (0.96); EL/PL 1.021.14 (1.10); PW/HW 1.44-1.59 (1.54); forebody length 5.24-5.69 (5.42). 워 ($\mathrm{n}=2$): $\mathrm{HW}=1.62-1.71$ (1.67); HL = 1.36-1.42 (1.39); HL/HW 0.83-0.84 (0.83); PW = 2.02-2.16 (2.09); PL=1.78-2.00 (1.89); PL/PW 0.88-0.93 (0.90); $\mathrm{EW}=2.13-2.29$ (2.21); $\mathrm{EL}=2.04-2.16$ (2.10); EL/EW 0.94-0.96 (0.95); EL/PL 1.08-1.15 (1.11); PW/ HW 1.49-1.52 (1.50); forebody length 5.18-5.58 (5.38).

Medium sized, robust species; body black (Fig. 10A).
Head black, distinctly transverse, with eyes medium sized (EyL/TL $=1.76-2.06$ (1.91)), microsculpture of transverse waves, with two interocular punctures between anterior frontal punctures (Fig. 6G); antennae and palpi pale reddish with most of antennomeres 1-3 clearly darkened; all antennomeres elongate, except apical antennomere almost transverse.

Thorax: pronotum black, slightly wider than long, clearly wider than head, with microsculpture of transverse waves, three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching just beyond first puncture of dorsal row; scutellum sparsely punctured and pubescent; elytra most often reddish brown, but occasionally fully darkened or dark with reddish sutural margins, uniformly pubescent, with punctures clearly separated, quadrate or slightly wider than long, slightly longer than pronotum; legs reddish brown with inner face of tibia and inner surface femur darkened and tarsi paler.

Abdomen black, tergites uniformly punctured, with clear iridescence.

Male. Aedeagus (Figs 16B, 17): paramere rather broad, with clear basal attenuation and pointed apex, reaching to apex of median lobe, with small sensory peg setae forming thin row in a semi-circle near edge of paramere, except at pointed apex; median lobe broad with sudden constriction to a point at apex, on parameral side with two fang-like subapical teeth basad; internal sac with elongate and broad sclerites.
Differential diagnosis. Quedius horni can be distinguished from Q. laticollis and Q. strenuus by the presence of two additional setiferous punctures between the anterior frontal punctures. It can be distinguished from Q. labradorensis by the darker body and the clearly darkened antennomeres $1-3$. Quedius horni can be clearly distinguished from other members of the molochinoides-group (Q. altanai, Q. lanei and Q. molochinoides) only by the spoon-like shape of the paramere, which has a clear basal attenuation and broadening towards pointed apex, with its peg setae situated in a semi-circle near the edge of the of the paramere below its pointed apex. However, this species co-occurs with other species of the molochinoides-group only in Alaska, which makes such detailed examination for diagnostic purposes within the group less necessary anywhere else.

Bionomics. Little is known about the habitat requirements of Q. horni. It seems to prefer wet environments, as it has been collected in moist habitats from sea level to an elevation slightly above 1000 meters. Most specimens were collected in coastal sites or inland near rivers and creeks suggesting its close association with wet habitats near water bodies. For example, the species was found in river flood debris and on beaches under driftwood in British Columbia, in moss at Auke Bay, Alaska, in a dung trap on Haida Gwaii, and in forest litter around large firs at Mary's Peak, Oregon (Smetana 1971a). Immature specimens were collected in late May at Tsawwassen, British Columbia and in early July on Mt. Hood, Oregon (Smetana 1971a). Based on the records near coastal sites the species is most likely somewhat halotolerant.
Distribution. Quedius horni is now known from the Pacific Northwest, from Oregon to southern Alaska, including Vancouver Island and Haida Gwaii (most of ecoregion 7.1; Fig. 21). It can be found at coastal and riverine sites and to mid elevation of the Cascades and Mount Olympia. This revision, including barcoding, confirmed its first record from southern Alaska, and thus extended the species range significantly to the north. It is still uncertain how far south the species occurs, with the current southernmost record coming from central Oregon. Based on the extent of ecoregion 7.1, this may extent along the coast into California.

Quedius labradorensis Smetana, 1965

(Figs 1, 4, 10F, 16A, 17, 21)
Quedius labradorensis Smetana, 1965a: 37 [Type locality: Südost-Labrador: Forteau]
Quedius labradorensis insularis Smetana, 1971a: 140 [Type locality: Alaska: Anton Larsen Bay, Kodiak]. Preoccupied by Quedius insularis Bernhauer \& Schubert, 1916; currently a junior synonym of Philonthus umbratilis (Gravenhorst, 1802).
Quedius labradorensis kodiakensis Smetana 1999: 79 (as a replacement name for insularis Smetana), syn. nov.

References. SMETANA (1964): 37, (1965a): 37, (1965b): 12 (distribution; misidentified as Q. lanei according to Smetana 1971a: 138); (1971a): 138 (characters and distribution); (1973): 1428, (1976a): 172, (1978a): 826, (1981): 640 (distribution); Downie \& Arnett (1996): 391 (characters and distribution); PoHL et al. (2007): 299 (biology); WEBSTER et al. (2012): 315 (distribution).

Type material examined. Quedius labradorensis: Holotype (CNC), labelled: "SE Labrador Forteau N:o 285. 13-15.VII. 51 Lindroth / Holotype Quedius labradorensis m. / 1963 Smetana det. / Quedius labradorensis m. 63 Smetana det. 19 / Holotype CNC No. 9473 Quedius labradorensis Smet.".

Quedius labradorensis insularis: Holotype đ (CNC), labelled: "Alaska, Anton Larsen Bay, Kodiak, 445, 24.VIII.1958, Lindroth / Holotype Quedius labradorensis insularis Smetana 1968 CNC No. 10866". Paratype: same collection data as holotype ($1 \not \subset \mathrm{CNC}$).
Additional material examined. CANADA: Alberta: George Lake, [53.95, -114.1], 10.IX.1966, leg. R. E. Leech (18 CNC); George Lake, [53.95, -114.1], 1.VI.1969, leg. H. Goulet (3 CNC); Wagner Natural Area, Edmonton 6km W, [53.57, -113.82], pan trap, 12-25.VI.1985, leg. Finnamore \& Thormin (4 CNC). British Columbia: 10 mi E of East Pine, [55.71, -120.97], 16.VI.1958, leg. Lindroth (1 CNC). Manitoba: Onah, [49.81, -99.52], 20.VIII.1921, leg. N. Criddle (1 CNC); Riding Mountain National Park, [50.83, -100.20], pan traps, Bison enclosure, 4.VIII.1979, leg. D. B. Lyons (1 CNC); Riding Mountain National Park, Edward Creek at Highway 10, [50.92, -100.05], 17.IX.1979, leg. A. Smetana (1 CNC); Riding Mountain National Park, 1 km SE Long Lake, [50.75, -100.32], 16.IX.1979, leg. A. Smetana (1 CNC).

Northwest Territories: Highway 2 mi SE Fort Simpson, [61.82, -121.3], 23.VI-3.VII.1972, leg. A. Smetana (3 CNC). Nova Scotia: Cape Breton Highland National Park, near Benjies Lake, [46.73, -60.8], 17.VI.1984, leg. A. Smetana (1 CNC); Cape Breton Highlands National Park, Fishing Cove Trail, [46.79, -60.87], 305 m , sifting, moss at seepage, 25.IX.1984, leg. J. M. Campbell \& A. Davies (1 CNC); Cape Breton Highlands National Parks, Lone Shieling, [46.81, -60.73], pan trap, forest, 19-24.VII.1983, leg. L. Masner (7 CNC); Cape Breton Highland National Park, MacKenzie Mountain, [46.81, -60.81], pan trap, 2.VIII.1983, leg. D. E. \& J. E. Bright (7 CNC); Cape Breton Highland National Park, North Mountain, [46.82, -60.65], fern bog, 11-19. VII.1983, leg. L. Masner (3 CNC); Cape Breton Highland National Park, Paquette Lake, [46.81, -60.44], pan trap, 1.VII.1983, leg. R. Vockeroth (1 CNC); Cape Breton Highlands National Park near Sammy's Barren, [46.81, -60.72], 440 m , sifting litter, Birch litter, 24.IX.1984, leg. J. M. Campbell \& A. Davies (4 CNC); Cape Breton Highland National Park, [46.81, -60.76], 400 m , pan trap, forest, 11-13.VI.1983, leg. Y. Bousquet (1 CNC). Ontario: Cochrane, [49.14, -81.02], 22.VIII.1918, leg. H. Notman (1 CNC); Moosonee, [51.29, -80.71], 30.VI.1973, leg. J. M. Campbell \& R. Parry (1 CNC); 22 mi S Pickle Lake, [51.15, -90.21], 20.VI.1973, leg. J. M. Campbell \& R. Parry (1 CNC); 36 mi S Pickle Lane, [50.76, -90.28], 22.VI.1973, leg. J. M. Campbell \& R. Parry (2 CNC); Thunder Bay, Mount McKay, [48.34, -89.28], 487 m, 15.VI.1973, leg. J.M. Campbell \& R. Parry (3 CNC); Thunder Bay, Powell Lakes, 10km NE Lake Superior, [49.02, -82.98], forest FIT, 31.V.1980, leg. M Kaulbars (1 CNC). Quebec: Charlevoix-East, Ste-Mathilde, [47.68, -70.11], 28.VIII.1975, leg. J. F. Landry (2 CNC); Duparquet, [48.47, -79.17], 30.V.1936, leg. G. Stace Smith (2 CNC); Lac Duparquet, [48.49, -79.26], cedar fir forest, 4.-11.VIII.1996, leg. Paquin (5 CNC); Lac Cascapedia, Parc Gaspesie, [48.92, -66.32], 518 m , pan trap, 14.VII.1972, leg. J. M. \& B. A. Campbell (1 CNC); Lac Pointe, [46.33, -72.7], 22.IX.1980, leg. C. Chantal (3 CNC); Longue-Pointe-de-Mingan, [50.28, -64.19], undergrowth vegetation, 16.VII.2008, leg. LeSage \& Lussier ($1 \jmath^{\imath} \mathrm{CNC}$); Montreal, [45.5, -73.62], 9.VI.1908, leg. E. J. Kiteley (2 CNC). Ile d'Anticosti: Pte Sud-Ouest, [49.39, -63.59], 15.VII.1977, leg. J. F. Landry (1 CNC). Saskatchewan: Flotten Lake, [54.62, -108.50], 6.-13.VI.1998, leg. T. Cobb (3m SMNH); Lac La Rouge, Stueck Island, [55.19, -105.01], 19.VII.1979, leg. E. J. Kiteley, (1 CNC). USA: Alaska: Denali State Park, Byers Lake Campground, [62.74, -150.11], 23.VI.1978, leg. Smetana \& Becker (2 CNC); Denali NP, Wickersham Dorne, 63.348, -150.97749, 977m, alpine tundra, pitfall traps, 29.VI.2017, leg. A. Haberski et al. (3 UAM); Denali NP, Wickersham Dorne, 63.348, -150.97749, 977 m , shrubs, pitfall traps, 23.27.VII.2017, leg. A. Haberski et al. (19 UAM); Denali NP, Wickersham Dorne, 63.548, -150.97749, 811m, shrubs, pitfall traps, 3.-19.VII.2018, leg. D. Sikes et al. (4 UAM); Denali NP, Wonder Lake, 63.48822, -150.86237, 645m, spruce, pitfall traps, 7.-21.VI.2018, leg. D. Sikes et al. (1 UAM); Fairbanks Park, 64.7924, -148.1511, 440 m, S-facing hill, forest edge Populus tremuloides, pitfall traps, 17.-14.VII.2007, leg. B. Mortensen (1 UAM). Kodiak Island: 30 mi S Kodiak, [57.54, -153.51], 23.VIII.1958, leg. G. E. Ball (1 CNC). Michigan: Isle Royale, Daisy Farm, [48.09-88.60], 17.VIII.1965, leg. Bixler (1 ठ FMNH). New Hampshire: Carter Notch, [44.26, -71.19], 6.VIII.1908, leg F. Blanchard (1 CNC). New York: Indian Falls, Mount Marcy, [44.11, -73.92], 16.VI.1942, leg. H. Dietrich (1 CNC).

Redescription. Measurements $\widehat{\widehat{ } \hat{} 1}(\mathrm{n}=3)$: $\mathrm{HW}=1.76-$ 1.87 (1.80); HL = 1.49-1.56 (1.52); HL/HW 0.83-0.85 (0.84); $\mathrm{PW}=2.20-2.44$ (2.28); $\mathrm{PL}=2.07-2.29$ (2.15); PL/PW 0.94-0.95(0.94); $\mathrm{EW}=2.29-2.40$ (2.35); $\mathrm{EL}=$ 1.93-2.18 (2.07); EL/EW 0.82-0.95 (0.88); EL/PL 0.911.04 (0.96); PW/HW 1.46-1.57 (1.50); forebody length 5.49-5.93 (5.73). 우 ($\mathrm{n}=2$): HW = 1.89-1.93 (1.91); HL $=1.58-1.62$ (1.60); HL/HW 0.84; PW = 2.33-2.38 (2.36); PL $=2.13-2.16$ (2.14); PL/PW 0.90-0.92 (0.91); EW = 2.36-2.40 (2.38); EL = 2.09-2.13 (2.11); EL/EW 0.87-0.91 (0.89); EL/PL 0.98-0.99 (0.98); PW/HW 1.47-1.48 (1.47); forebody length 5.84-5.87 (5.86).

Large species; body brown to black (Fig. 10F).

Head black, transverse, with eyes medium sized (EyL/ $\mathrm{TL}=1.72-1.89$ (1.82)), microsculpture of transverse waves, with two interocular punctures between anterior frontal punctures (Fig. 6G); antennae and palpi reddish with basal three antennomeres clearly pale, all antennomeres elongate.

Thorax: pronotum brown to black, slightly wider than long, clearly wider than head, with microsculpture of transverse waves, three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching almost to level of second puncture of dorsal row; scutellum sparsely punctured and pubescent; elytra most often pale orange to reddish brown, rarely fully darkened, clearly wider than long, of similar length as pronotum, with rather short uniform pubescence, with punctures clearly separated from each other; legs reddish with inner face of tibia darkened and tarsi paler.

Addomen brown to black, tergites uniformly punctured, without clear iridescence.

Male. Aedeagus (Figs 16A, 17): paramere rather broad, with slight basal attenuation and extending into softly rounded apex, reaching to the apex of median lobe, with small sensory peg setae forming two broad irregular rows near the edge of the of the paramere, except at very apex which is slightly folded; median lobe continuously slimming toward pointed apex, on parameral side with two folded teeth which almost meet to form a cavity with a small slit towards apex; internal sac with elongate and internal sclerites.
Differential diagnosis. Quedius labradorensis can be distinguished from Q. laticollis and Q. molochinus by the presence of two additional setiferous punctures between the anterior frontal punctures. It can be distinguished from other members of the molochinoides-group (Q. lanei, Q. molochinoides, and Q. horni) by the larger body size and pale basal three antennomeres.
Synonymic notes. The subspecies Q. l. kodiakensis was described as a form restricted to Kodiak Island, which differs from the nominotypical subspecies by a slightly larger body and more spatulate paramere with larger peg setae (Smetana 1971a). Generally, species of Quedius s. str. display some variation in body size and shape of the paramere. With more material available, the observed variation between the putative subspecies falls within the variation observed in the widely distributed nominal subspecies. Thus, we consider Quedius l. kodiakensis Smetana, 1999 syn. nov. a junior subjective synonym of Quedius labradorensis Smetana, 1965.
Bionomics. As a northern species, Q. labradorensis prefers wet boggy habitats with specimens collected in litter and moss of mixed forests, mainly poplar and birch, in Ontario (Smetana 1971a), in deep moss in Saskatchewan (Smetana 1990), fern bogs in Nova Scotia, margins of creeks on Kodiak Island (Smetana 1971a), and shrubby alpine tundra in Alaska. Smetana (1976a) reported this species from moss, mushrooms, and deciduous leaf litter (birch and poplar stands) near streams. In the Alberta foothills forests, Q. labradorensis is considered to be an open-ground specialist after forest logging, which only spread short distances into adjacent pristine forests, with numbers of this species also increased after logging (PoHL et al. 2007).

In New Brunswick, most adults have been found from April to May in old-growth eastern white cedar swamps in moss usually near small streams, with the exception of one adult found under a patch of white-tailed deer dung, and one collected at a mercury-vapor light (Webster et. Al 2012). The species is found mainly at higher elevation ($750-1500 \mathrm{~m}$) in the southeastern part of its range and at lower elevations up to 800 m in the northern part of its range. Several specimens found in pan traps across Canada indicate that the species may be actively flying or hunting in the vegetation.
Distribution. Quedius labradorensis is a northern species distributed transcontinentally across boreal North America from Labrador and Newfoundland to Alaska where it extends to Kodiak Island (ecoregions 4, 5, and northern part of 6 and 7, Fig. 21). To the south it is found in some of the large remaining wetlands, as well as at higher elevation sites, e.g. in Northern Rockies and Cypress Hills in the West, and at Mount Washington and the MacIntyre Range in the East. The northernmost records from Fairbanks Park in Alaska, and Fort Simpson in the Northwest Territories suggest that the species extends throughout the boreal ecoregion of the continent.

Quedius lanei Hatch, 1957

(Fig. 1, 4, 5, 10B, 16D, 17, 21)
Quedius lanei Hatch, 1957: 216 [Type locality: Washington: Blue Mts.]
References. Korge (1962b): 333 (characters and notes); Smetana (1971a): 144 (characters and distribution); (1976a): 174 (distribution).

Material examined. USA: California: Fresno County, Huntington Lake, [37.24, -119.18], 25.IV.1960, leg. L. G. Ingles (2 CNC); Lassen National Park, Summit Lake, [40.49, -121.42], 2042 m, 15.VII.1979, J. M. \& B. A. Campbell (3 CNC). Nevada: Lake Tahoe, Zephyr Cove, [39.01, -119.94], 1889 m, 9.XII.1986, leg. A. Smetana (1 CNC). Oregon: 16 mi NE Bly Deming Creek Road, [42.55, -120.76], 1828 m, 21.VII.1979, leg. J. M. Campbell \& J. Schuh (3 CNC); Grant County, Strawberry Range, Strawberry Lake, [44.3, -118.68], 1920 m, 4.VI.1989, leg. A. Smetana (20 CNC); Klamath County, Gearhart Mountain, [42.51, -120.86], 2194 m, 24.VI.1974, leg. A. \& D. Smetana (1 CNC); Klamath County, Mare's Egg Springs, 7.3 mi SW Fort Klamath, [42.66, -122.08], 25.VI.1974, leg. A. \& D. Smetana (2 CNC); Union County, Blue Mountain Road 62, Jarboe Creek, [45.80, -117.85], 1200 m, 29.V.1989, leg. A. Smetana (1 CNC). Washington: Blue Mountain, [45.5, -118], 914 m, 29.VIII.1923, leg. M. C. Lane (1 CNC).

Redescription. Measurements $\widehat{\jmath}$ ($\mathrm{n}=3$): HW $=1.56-$ 1.78 (1.63); HL = 1.33-1.49 (1.39); HL/HW 0.84-0.87 (0.86); $\mathrm{PW}=2.04-2.22$ (2.11); $\mathrm{PL}=1.80-2.00$ (1.87); PL/PW 0.88-0.90 (0.89); EW = 2.16-2.29 (2.20); $\mathrm{EL}=$ 2.02-2.11 (2.06); EL/EW 0.92-0.95 (0.94); EL/PL 1.061.14 (1.10); PW/HW 1.49-1.53 (1.52); forebody length 5.18-5.60 (5.33). 아 ($\mathrm{n}=6$): $\mathrm{HW}=1.53-1.73$ (1.64); $\mathrm{HL}=1.27-1.40$ (1.35); HL/HW 0.77-0.86 (0.82); $\mathrm{PW}=$ 1.96-2.29 (2.09); PL=1.73-2.00 (1.85); PL/PW 0.87-0.91 (0.89); $\mathrm{EW}=2.00-2.44$ (2.18); $\mathrm{EL}=1.93-2.29$ (2.07); EL/EW 0.92-1.02 (0.95); EL/PL 1.09-1.18 (1.12); PW/ HW 1.46-1.63 (1.55); forebody length 4.98-5.69 (5.27).

Medium sized species; body dark brown to black (Fig. 10B).

Head black, distinctly transverse with eyes medium sized $(\mathrm{EyL} / \mathrm{TL}=1.81-2.14$ (1.99) $)$, microsculpture of transverse waves, with two interocular punctures

Fig. 17. Variation in genitalic morphology of species from Quedius molochinoides-group. From left to right for each specimen, first paramere then median lobe (parameral view) and lastly median lobe (lateral view) are given. For each specimen locality is noted underneath.
between anterior frontal punctures (Fig. 6G); antennae and palpi dark with joints pale reddish, all antennomeres elongate, except last and penultimate antennomere almost transverse.

Thorax: pronotum black, slightly wider than long, clearly wider than head, with microsculpture of transverse waves, three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching just beyond level of first puncture of dorsal row; scutellum
sparsely punctured and pubescent; elytra variable in coloration, from all black or reddish brown to occasionally dark with reddish sutural margins, uniformly pubescent, punctures clearly separated, quadrate or slightly wider than long, slightly longer than pronotum; legs reddish brown with inner face of tibia and inner surface of femur darkened and tarsi paler.

Abdomen dark brown to black, tergites uniformly punctured, with clear iridescence.

Male. Aedeagus (Figs 16D, 17): paramere lanceolate, rather broad, without clear basal attenuation, extending to apex of median lobe, with small sensory peg setae forming two irregular rows meeting in an irregular cluster below apex; median lobe lanceolate, broad, with sides slightly constricting until abrupt constriction near pointed apex, on parameral side with two blunt teeth simply protruding inward and slightly basad; internal sac with two larger oval and two smaller rounder sclerites.
Differential diagnosis. Quedius lanei can be distinguished from Q. laticollis and Q. strenuus by the presence of two additional setiferous punctures between the anterior frontal punctures. It can be distinguished from Q. labradorensis by the darker body and the clearly darkened basal three antennomeres. It can be distinguished from other members of the molochinoides-group (Q. altanai, Q. horni, and Q. molochinoides) only by the male genitalia, specifically by the paramere, which is parallel-sided to constricted at base, and the broad median lobe with a constricted apex and two blunt teeth pointing in and downwards. However, Q. lanei does not seem to co-occur with any other species of the molochinoides-group, this fact reducing the need of genitalia investigation in all cases.
Comments. A series of specimens in Smetana (1971) including one Hatch paratype from Fish Lake in Summerland, British Columbia ascribed to Q. lanei was found to belong to Q. molochinoides. Quedius lanei does not occur in Canada. Paratypes of Q. lanei from Idaho were found to belong to Q. altanai and have thus been moved to this species.
Bionomics. Quedius lanei prefers mountainous areas and occurs only at high elevations with records from roughly 1000 m in the northern part of its range to up to 2200 m in the southern part. Little is known about the prefered habitat of the species, but based on the examined records it seems to be found mainly in wet debris near creeks or mountain lakes. For example, the Oregon specimens from Klamath County were collected by sifting wet moss and deciduous leaf litter (willow) at the edges of fast-running creeks or by sifting wet debris on the bottom of a dried-out pond in a coniferous forest (Smetana 1976).
Distribution. Quedius lanei is currently known from high elevation sites on the eastern slopes and foothills of Cascades, the Sierra Nevada and the Blue Mountains (ecoregions 6.2.8, 6.2.9 and 6.2.12, Fig. 21). It is found from sutheastern Washington through Oregon to much of eastern California and limited areas of western Nevada. In the north it does not seem to extend into the northern part of the Cascades, although based on the ecoregions it may be be present quite far north on the eastern slopes. To the northwest it is replaced by Q. horni. Quedius lanei was formerly considered to also include specimens from central and southern Rockies, but we here show that these belong to a different species Q. altanai described as new herein.

Quedius molochinoides Smetana, 1965

(Figs 1, 4, 5, 10D, E, 16E, 17, 21, 22)
Quedius molochinoides Smetana, 1965a: 35 [Type locality: Newfoundland: Ha-Ha Bay]
Quedius molochinoides miquelonensis Smetana, 1965a: 36 [Type locality: Miquelon], syn. nov.

References. Smetana (1971): 141 (characters and distribution); (1976): 174, (1978): 826, (1981): 640 (distribution); Downie \& ArNett (1996): 391 (characters and distribution).

Type material examined. Quedius molochinoides: Holotype: § (CNC), labelled: "NW Newfoundland Ha-Ha Bay N:o 103. 18.VII. 49 Lindroth / Holotypus Quedius molochinoides m. / Quedius molochinoides m. 63 Smetana det. 19 / Holotype CNC No. 9474 Quedius molochinoides s. s. Smet. / CNC". Paratype (labelled as allotype): same collection data as holotype ($1 \not q$ CNC).

Quedius molochinoides miquelonensis: Holotype: §(CNC), labelled: "Miquelon N:o 353 8-10.VIII. 51 Lindroth / Holotypus". Paratype (labelled as allotype): "Quedius molochinoides miquelonensis m. / 1963 Smetana det. / Quedius molochinoides miquelonensis m. Smetana det. 1963/ Allotype CNC No. 9475 Quedius molochinoides miquelonensis Smet." ($1 \not \subset$ CNC).
Additional material examined. CANADA: Alberta: Castle river valley, SW corner of township, [49.49, -114.22], along the road, under rocks etc., 23.V.1990, leg. B.F. \& J.L. Carr (1 CNC); Cirrus Mountain, Banff National Park, [52.16, -116.97], 1676 m, 16.VI.1968, leg. Campbell \& Smetana (1 CNC); Crow's Nest Pass, Rocky Mount, [49.59, -114.53] (1 CNC); Kananaskis Forest Experiment Station, [51, -115.1], 1.VIII.1971, leg. J. M. \& B. A. Campbell (1 CNC); Mile S Seebe, [51.09, -115.06], 26.VII.1968, leg. A. G. Raske (1 CNC); Tp. 5 Rge. 3 W. 5 Mer, [49.39, -114.34], leg. 23.VI.1994, leg. B. F. \& J. L. Carr (1 CNC); Waterton, [49.05, -113.9], 10.VII.1930, leg. Washur (1 CNC); Waterton Lks. Nat. Pk., Cameron Lk., 49.0833, -113.9164, 12.VI.1973, leg. J. Redner \& C. Starr (1 CNC); Waterton Lakes National Park, picnic area on Cameron Creek near Cameron Lake, [49.05, -113.98], 1630 m , pitfall trap, 7-11.VI.1980, leg. I. M. Smith (5 CNC); Waterton Lake National Park, Cameron Lake, [49, -114.04], berlese trap, grassy tussock, seepage area, 7.VI.1980, leg. I. M. Smith (1 CNC); Waterton Lake National Park, Crandell Lake Trail, [49.06, -113.94], berlese trap, Alder litter, 13.VI.1980, leg. I. M. Smith (1 CNC); Waterton Lakes National Parks, Lower Waterton Lake, 49.09, -113.85, 1370 m, ex moss, 26.VI.1980, leg. J. M. Campbell (7 CNC); Waterton Lakes National Park, Cameron Lake, [49, -114.04], pitfall trap, wet meadow, 8.VI.1980, leg. I. M. Smith (14 CNC); Waterton Lakes National Park, Cameron Creek picnic ground, [49.04, -113.98], pitfall trap, edge meadow, 17-28.VI.1980, leg. I. M. Smith (2 CNC); Waterton Lakes National Park, Maskinonge Lake, [49.1, -113.83], 1310 m , sifting litter, Populus litter, 14.VI.1980, leg. J. M. Campbell (1 CNC); Waterton Lakes National Park, near Highway $6,4.4 \mathrm{~km}$ SE Junction Highway 5, [49.08, -113.79], pitfall trap, edge of beaver pond, 12-19.VI.1980, leg. I. M. Smith (2 CNC); Waterton Lakes National Park, Crypt Lake, [49, -113.84], 1981 m, under rocks, 22.VI.1980, leg. J. M. Campbell (1 CNC); Waterton Lakes National Park, near Lower Rowe Lake, [49.05, -114.05], berlese trap, moss from spring seepage area, 18.VI.1980, leg. I. M. Smith (4 CNC); Waterton Lakes National Park, Lookout Butte Picnic Site, [49.72, -113.56], flight interception trap, 9-14. VI.1980, leg. J. M. Campbell (1 CNC); Waterton Lakes National Park, Km 9 Chief Mountain Highway, [48.91, -113.43], 1371 m, flight interception trap, 7.VII.1980, leg. H. J. Teskey (38 CNC); Waterton Lakes National Park, near Highway 64.4 km SE Junction Highway 5, [49.08, -113.79], pitfall trap, in meadow by beaver pond, 7-11.VI.1980, leg. I. M. Smith (3 CNC); Waterton Lake National Park, Rowe Lakes Trail, [49.05, -114.06], 1828 m, under bark, 12.VI.1980, leg. J. M. Campbell (2 CNC); Waterton NP, Rowe Creek, 49.0833, -113.9164, 1664 m, 2.VIII.1976, leg. J. M. Campbell (1 CNC). British Columbia: Amiskwi River, Yoho National Park, [51.38, -116.55], 7.VIII.1971, J. M. \& B. A. Campbell (1 CNC); Bowron Lake, [53.23, -121.37], 15.X.1953, leg. G. S. Smith (1 ठCNC); Creston, [49.09, -116.51], 29.VII.1956, leg. G. S. Smith, (1 CNC); 8 mi W Creston, [49.09, -116.72], ex river debris, 10.VI.1968, leg. Campbell \& Smetana, (1 CNC); 21 mi W Creston, [49.09, -117.04], ex river debris, 9.VI.1968, leg. Campbell \& Smetana (1 CNC); Fish Lake, Summerland, [49.84, -115.44], 27.X.1931, leg. A. N. Gartell (2 CNC); Highway 37, 30km S Dease Lake, [58.43, -129.99], 2.VII.1987, leg. L. Carr (2 CNC); Highway 37A, Bear Glacier, [56.09, -129.66], 6-7.VII.1987, leg. Larson \& Carr (1 CNC); Koutenay National Park near Dog Lake, [50.78, -115.92], 24.V.1981, leg. I. Askevold (1 CNC); Mt. Revelstoke, [51.09, -118.04], 1737 m, under rocks in swamp, 1.VII.1952, leg. G. J. Spencer (1 CNC); Mount Revelstoke, [51.09, -118.04], 10.VII.1952, leg. G. J. Spencer (1 CNC); Radium, [50.62, -116.07], 26.IV.1994, leg. B.F. \& J. L. Carr (1

CNC); Sinclair Creek, Kootenay National Park, [50.63, -116.06], 1828 m, 12.VI.1968, leg. Campbell \& Smetana (1 CNC); Summerland, [49.6, -119.67], 27.X.1931, leg. A. N. Gartell (1 CNC); Trinity Valley, [50.4, -118.91], under old \log, 16.IX.1943, leg. H. B. Leech, (1 CNC); Vernon, [50.31, -119.28], under stone, 18.IX.1939, leg. H. Leech (1 CNC); Vernon, Deep Lake, [50.79, -120.34], rotten log, hibernating, 10.IV.1989, leg. H. Leech, (1 CNC); Vernon, Monashee Mountains, [50.27, -119.27], 1371 m, under stone, 14.X.1934, leg. H. Leech (1 CNC). Ontario: 12 mi NE Moosonee, [51.44, -80.45], 1.VII.1973, leg. R. Parry \& J. M. Campbell (1 CNC); Gregoire Mills, [49.29, -81.95], 22.VI.1973, leg. J. Redner \& C. Starr (1 CNC). Yukon: Mile 11 Canol River, [61.98, -132.45], 1219 m, 22.VIII.1962, leg. P. J. Skitsko (1 CNC); Slim's River km 1705 Alaska Highway, [61.01, -138.51], ex marsh, 7.VII.1981, leg. Bright (1 CNC). Quebec: Lac Mitis, 48.30, -67.80, 9.-12.VII.1993, leg. Hébert \& Jobín (1 LFC); Parc Gaspesie (Gaspe-O), Mont Logan, [48.89, -66.64], 1040 m, Spruce forest clearing with moss and ericaceae, pitfall traps, 2-14.VII.1993, leg. F. Landry (1 CNC). USA: Alaska: Becharof NWR, Island Arm East, 57.76107, -155.98752, S facing slope, Salix, fern, \& cow parsnips, pitfall traps, 29.VI.-5.VII.2007, leg. Savage (4 UAM); Chichagof Island, 57.98256, -135.21811, 970 m, Dryas, Salix, Cladonia portentosa, ground search, 15.VII.2013, leg. Ridling (1 UAM); Chichagof Island, 57.98708, -135.20357, 702 m, Nephrophyllidium crista-galli, Geranium erianthum, Artemisia arctica, pitfall traps, 14.-15.VII.2013, leg. Ridling (7 UAM); S Chilkat Peninsula, 58.42520, -135.15205, 687 m , subalpine, Vaccinum, Cornus, pitfall traps, 11.-12.VII.2010, leg. D. Sikes (1 q UAM); Haines, Flower Mountain, 59.39353, -136.31129, alpine Sanguisorba, Carex, pitfall traps, 15.-16.VII.2010, leg. D. Sikes (3 UAM); Hope, Kenai Peninsula, [60.89, -149.65], 27.VII.1951, leg. W. J. Brown (1 CNC); Kenai Mountain Creek Above Tern Lake Campground, [60.53, -149.53], 274 m, 13.VI.1978, leg. Smetana \& Becker (1 CNC); Kenai Mountain, 2 mi S Moose Pass, [60.44, -149.37], 182 m, 30.V.1978, leg. Smetana \& Becker (1 CNC); Kenai Mountain, 22 mi N Seward, [60.44, -149.45], 152 m, 27.V.1978, leg. Smetana \& Becker (2 CNC); Lituya Bay, Cenotaph Island, [58.64, -137.57], $182 \mathrm{~m}, 22$ Pitfalls in Alder Woods, 25.-26.V.1977, D. Mann, (1 CNC); Moose Pass, Kenai Peninsula, [60.49, -149.42], 16.VI.1951, leg. W. J. Brown (2 CNC); Mount Hawthorne, 58.23652, -134.23904, 748m, subalpine meadow, low ridge top, baited pitfall traps, 22.-23.VII.2013, leg. Ridling (4 UAM); Palmer, 61.60, -149.10, pasture, muskox dung, 1.VIII.1988, leg. Pilny (1 DEBU); Seward [60.12, -149.39], 14.V.1951, leg. W. J. Brown (2 CNC); Skagway, 59.50, -135.10, moist pasture, cow \& horse dung, 15.VII.1988, leg. Pilny (1 DEBU); Valdez, [61.14, -146.35], on snow, 29.IV.1972, leg. Dick (1 UAM); Valdez, 61.1167,-146.2667, Picea \& Populus forest, under wood and stones, wet vegetated gravel, 10.VIII.1988, leg. Pilny (2 DEBU). Idaho: Moscow, [46.80, -116.85], 14.IV.1916, leg. A. C. Burrill (1 CNC). New Hampshire: Mount Washington, [44.27, -71.31], 1874, leg. Blanchard (4 MCZ); White Mountains, Peabody River, [44.39, -71.15], $1828 \mathrm{~m}, 12$.VII.1925, leg. Quirsfeld (1 CNC). New York: Indian Falls, Mount Marcy, [44.11, -73.92], 2.IX.1942, leg. H. Dietrich (1 ${ }^{7}$ CNC); Lake Tear, Mount Marcy, Essex County, [44.11, -73.93], 27.VII.1922, leg. H. Notman (1 CNC).

Redescription. Measurements ${ }^{\lambda}(\mathrm{n}=2)$: $\mathrm{HW}=1.56-$ 1.71 (1.63); $\mathrm{HL}=1.36-1.44$ (1.40); HL/HW 0.84-0.87 (0.86); PW $=2.00-2.22$ (2.11); $\mathrm{PL}=1.91-2.00$ (1.96); PL/PW 0.90-0.96 (0.93); EW = 2.02-2.36 (2.19); EL = 1.84-2.29 (2.07); EL/EW 0.91-0.97 (0.94); EL/PL 0.971.14 (1.05); PW/HW 1.48-1.54 (1.51); forebody length 5.11-5.73 (5.42). ㅇ ($\mathrm{n}=5$): HW = 1.69-1.89 (1.77); $\mathrm{HL}=1.38-1.56$ (1.45); HL/HW 0.81-0.83 (0.82); $\mathrm{PW}=$ 2.20-2.38 (2.26); PL=2.00-2.13 (2.07); PL/PW 0.89-0.93 (0.92); $\mathrm{EW}=2.22-2.49$ (2.36); $\mathrm{EL}=2.09-2.22$ (2.18); EL/EW 0.88-0.96 (0.93); EL/PL 1.02-1.11 (1.06); PW/ HW 1.52-1.63 (1.55); forebody length 5.53-5.87 (5.70).

Medium sized species; body dark brown to black (Figs 10D,E).

Head black, distinctly transverse with eyes medium sized (EyL/TL $=1.76-1.94$ (1.87)), microsculpture of transverse waves, with two interocular punctures between
anterior frontal punctures (Fig. 6G); antennae and palpi dark with joints reddish pale, all antennomeres elongate, except last and penultimate antennomere almost transverse.

Thorax: pronotum dark brown to black, slightly wider than long, clearly wider than head, with microsculpture of transverse waves, three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching just beyond level of first puncture of dorsal row; scutellum sparsely punctured and pubescent; elytra variable in coloration, from all black to reddish brown, occasionally dark with reddish sutural margins, uniformly pubescent, with punctures clearly separated, slightly wider than long, same length to slightly longer than pronotum; legs reddish brown with inner face of tibia and inner femur darkened and tarsi paler.

Abdomen dark brown to black, tergites uniformly punctured, with clear iridescence.

Male. Aedeagus (Figs 16E, 17): paramere lanceolate, rather broad, parallel-sided or with slight basal attenuation, reaching apex of median lobe, with small sensory peg setae in two irregular rows meeting below apex to form a slightly pointed 'arrowhead' shape; median lobe lanceolate broad, sides slightly constricting until abrupt constriction near pointed apex, on parameral side with two large pointed teeth folded from lateral margin to form almost closed cavity; internal sac with two larger oval and two smaller rounder sclerites.
Differential diagnosis. Quedius molochinoides can be distinguished from Q. laticollis and Q. strenuus by the presence of two additional setiferous punctures between the anterior frontal punctures. It can be distinguished from Q. labradorensis by the darker body including the clearly darkened basal three antennomeres. It can be distinguished from other members of the molochinoides-group (Q. altanai, Q. horni, and Q. lanei) only by the male genitalia, specifically by the broad median lobe with two large, flattened pointed teeth strongly folded to form an almost closed cavity. Quedius molochinoides can also be accidentally confused with Q. brunnipennis Mannerheim, 1843 from the subgenus Raphirus, but will easily be recognized by the entire labrum and by more parallel-sided abdomen.
Synonymic notes. The subspecies Q. m. miquelonensis was described from the islands of St. Pierre and Miquelon as a slightly broader and larger form with the male sixth sternite wider and more sharply triangular (Smetana 1971a) compared to the nominal subspecies. Generally, species within Quedius s. str. display notable intraspecific variation in body size. With the new material examined here the observed variation between the two subspecies falls within the limits of the variation observed within the widely distributed nominal subspecies. Thus, we consider Quedius molochinoides miquelonensis Smetana, 1965 syn. nov. a junior subjective synonym of Quedius molochinoides Smetana, 1965.
Comments. One of the paratypes of Q. lanei from Fishlake in Summerland of British Columbia, Canada was found to belong to Q. molochinoides. Specimens from the Okanagan area (Summerland, Copper Mountain and Vernon) are slightly different from the nominal species of
Q. molochinoides and others of Q. molochinoides-group 3 , specifically their genitalia being more slender. Images of the genitalia for two of these are provided in the supplementary material (Fig. S5). We are hesistant to describe them as a new species as we are lacking genetic barcodes as evidence for this. That said they may very well represent yet another species new for science.
Bionomics. Quedius molochinoides prefers meadows or open forests where it has mainly been collected in litter, grass tussock or under rocks from low elevations up to 2000 m . Specimens from Newfoundland were found on more or less open ground with rich vegetation or in leaf litter under bushes near river edges (Smetana 1971a), in British Columbia some specimens were collected in river flood-debris and by sifting wet debris and fallen leaves under bushes at mountain creeks, other specimens were found under rocks near snow in Kootenay National Park (Smetana 1971a). In Alaska the species was collected using pitfall traps in subalpine meadows and shrublands. Immature specimens were collected in July in Alberta and Idaho and from July to September on Mt. Washington in New Hampshire (Smetana 1971a).
Distribution. Quedius molochinoides is a northern species distributed transcontinentally across boreal North America from Labrador and Newfoundland to Alaska (ecoregions $4,5,6.1$ and partly 6.2 and 7.1, Fig. 21). To the south it is found at higher elevation sites, e.g. in the northern Rockies in the west (north part of ecoregion 6.2) and Mount Washington and Mount Marcy in the East (ecoregion 5.3). The northernmost records are from Valdez in Alaska and Churchill in Manitoba, suggesting that the species extends throughout the boreal ecoregion of the continent. There is a single record from Moscow Mountains in Central Idaho, which represents the southernmost record in the Rockies (ecoregion 6.2.3). COI barcoding showed that Q. molochinoides forms three distinct clusters (Figs 4, 5)). Quedius molochionides-group 1 is known from the Canadian national parks of Banff and Waterton Lakes and is delimited by the Rocky Mountains Trench to the west and the Canadian plains to the East (part ecoregion 6.2.4, Fig. 22). Quedius molochionides-group 2 is found in the Canadian Rockies, west of the Rocky Mountains trench and towards the north continuing to the Pacific Coast in Alaska all the way to the Kenai Peninsula northwards (ecoregion 6.2.1, 6.2.2, 6.2.3 and partly 6.1 and 7.1). Quedius molochinoides-group 3 is present from the Becharof Peninsula of Alaska in the west across the North American boreal region to glacial refugia of New England, Quebec and Newfoundland in the east (ecoregions 4,5 , and partly 6.1 and 7.1).

Quedius laticollis-group

Diagnosis. Species of medium size with variable coloration of elytra and appendages, from completely dark to brown, reddish, or yellowish pale. Eyes smaller, temples larger, with temporal puncture separated from posterior margin of eye by distance equal to diameter of this puncture. Frons without interocular punctures (Fig. 6F). Scutellum punctate and setose. Pronotum without puncture(s) in the posterior part of the sublateral row. Restricted to the Nearctic Region.

Quedius laticollis (Gravenhorst, 1802)

(Figs 1, 4, 9D,E, 14E, 22)
Quedius laticollis (Gravenhorst, 1802): 173 [Type locality: Baltimore] Quedius neomolochinus Korge, 1962b: 333 [Type locality: Washington, D.C.]

References. Erichson (1840): 536 (characters); MANNERHEIM (1843): 233 (characters); Gravenhorst (1847): 227 (characters); Kraatz (1857): 501 (characters); GANGLBAUER (1895): 403 (characters); FAUVEL (1902): 115 (characters); Porta (1907): 129 (characters); Gridelli (1924): 81 (characters); Scheerpeltz (1933): 1457 (characters); MÉQuignon (1937): 3 (characters); Smetana (1958): 364, (1965a): 39 (characters); (1971a): 136 (characters and distribution); (1973): 1427 (lectotype designation, synonymy); (1978a): 826, (1981): 640, (1990): 98 (distribution), DownIE \& Arnett (1996): 391 (characters and distribution), Golden \& Crist (2000): 532 (biology), Tishechkin \& Cline (2008): 335 (biology).

Material examined. CANADA: Ontario: Manitoulin I., Kip Fleming Tract, 8 km SW Gore Bay, 45.8702, -82.5418 , under stones oak savannah/alvar, 27.V.2010, leg. S. M. Paiero. (1 DEBU); Pinery Prov. Pk., 43.30, -81.83 , oak savannah, ex. Leaf litter, reared from larva, 17.IV.2010, leg. A. Brunke (1 DEBU); Rondeau Provincial Park, Spicebush Trail, [42.30, -81.85], mushroom and litter, 4.VI.1985, leg. J. M. Campbell \& A. Davies (3 CNC). Quebec: Levis, [46.73, -71.24], 25.VI.1979, leg. C. Chantal (1 CNC). USA: Alabama: Auburn, [32.59, -84.47], 8.IV.1978, leg. E. J. Kiteley (1 CNC); Ophelika, [32.65, -85.38], 23.I.1974, leg. E. J. Kiteley (1 CNC). Arkansas: Franklin County, Shores Lake, Ozark National Forest [35.63, -93.95], 20.V.1986, leg. J. M. Campbell (2 CNC); Logan County, Cove Lake, 9 mi SE Paris, [35.23, -93.63], ex debris at edge of lake, 25.V.1986, leg. J. M. Campbell (2 CNC); Logan County, 1 km E Lookout Mount. Magazine, [35.16, -93.94], sifting litter, leaf litter along edge of stream, 23.V.1986, leg. J. M. Campbell (2 CNC); Logan County, Mount. Magazine, Lookout, [35.16, -93.64], sifting litter, deciduous leaf litter, 26.V.1986, J. M. Campbell (1 CNC); Mobile, [30.69, -88.06], 22.VI. 1919 (1 MCZ); Newton County, Buffalo National Reserve, Steel Creek, [36.03, -93.33], treading clumps of Carex, 17.V.1986, leg. J. M. Campbell (2 CNC); Pulaski County, Pinnacle Mountain State Park, Base Trail, [34.84, -92.49], ex flood debris on river, 11.V.1986, leg. J. M. Campbell (1 CNC); Searcy County, Ozark National Forest, Forest Service Road 1205, Richland Creek, [35.77, -95.99], sifting litter, leaf litter along edge of stream, 15.V.1986, leg. J. M. Campbell (2 CNC); Stone County, Blanchard Springs State Park, [35.96, -92.17], 182 m, 18.V.1973, leg. D. H. Kavanaugh \& H. Goulet (2 CNC). Florida: Alacha Co., Gainesville, [29.63, -82.33], leaf litter \& rotten logs, 5.V.1981, leg. Watrous (1 FMNH); Fort Walton Beach, [30.41, -86.61], 21.III.1975, leg. E. J. Kiteley (1 CNC); Leon Co., Tallahassee, [30.43, -84.29], mixed hardwood, 19.XI.1976, leg. Marshall \& Justice (2 đ̂̉ 3 qq FMNH); St. Augustine, [29.89, -81.31], leg. Liebeck (1 CNC); Suwanee Co., 15 mi SW Live Oak Hwy. 51., [30.11, -83.17], pine and hardwood litter, 24.III.1977, leg. O’Brien (1 §MNH); Volusia Co., 2 mi S Enterprise, [28.85, -81.30], leaf litter, 23.VIII.1965, leg. Suter (1 § FMNH). Illinois: Union County, Pine Hills near McCann Springs, [37.58, -89.43], 6.V.1976, leg. A Smetana, (4 CNC); Union County, 5 mi NE Reynoldsville, [37.40, -89.28], 9.V.1976, leg. A Smetana (1 CNC); St Clair County, [38.46, -89.95], 6.X.1901, leg. G. W. Bock (1 CNC); Willow Springs, [41.72, -87.86], 16.VIII. 1923 (1 MCZ). Louisiana: Calcasieu Parish, Choupique Bayou, 7 mi N Hackberry, [30.13, -93.36], 16.IV.1976, leg. A. Smetana (27 CNC); Calcasieu Parish, 2 mi W Sulphur, [30.24, -93.45], 13.IV.1976, leg. A. Smetana (1 CNC); Corney Lake, [32.91, -92.74], 26.VI.1983, leg. B. F. \& J. L. Carr (2 CNC). Maryland: Baltimore, [39.31, -76.61], 6.VII.1909, leg. F. E. Blaisdell (1 CNC); Baltimore, [39.28, -76.62] (1 MCZ). Massachusetts: Barnstable Co., Woods Hole, 41.5304, -70.6533, 30 m , near small pond, 30.IX.2010, leg. BIObus (3 CMNH). Mississippi: Oktibeha County, Craig Springs, [33.31, -88.92], peripheral to cult. Cotton, pitfall trap, 10.X.1979, leg. G.L. Snodgrass (2 CNC). Missouri: Williamsville, [36.97, -90.54], deciduous duff, 12.VII.1955, leg. E. C. Becker (1 CNC). New Jersey: Woodbury, [39.83, -75.15], VIII.1920, leg. H. A. Wenzel (1 CNC). New York: Inlet Valley, Ithaca, [42.44, -76.5], 18.X.1917, leg. H. Dietrich (1 CNC). North Carolina: Ocracoke

Island, Ocracoke, [35.12, -75.93], 10.VIII.1972, leg. A. Smetana (2 CNC). Окцаномa: Latimer Co, [34.85, -95.25], IV.1994, leg. Stephen (5 TAMU). Pennsylvania: Allegheny County, [40.46, -79.98], leg. E. A. Klages (1 CNC), Frankford, [40.01, -75.07], leg. H. W. Wenzel (1 CNC). South Carolina: Camden, [34.25, -80.60], 23.VI.1929, leg. Darlington (1 MCZ). Texas: Anderson Co., 15 mi SSE Palestine, 31.5667, -95.4667, pitfall traps, 1.-10.XI.1996, leg. Yantis (2 TAMU); Brazos Co., Koppe's Bridge, 5 mi SW College Station, [30.57, -96.33], leaf litter, hardwood forest, 15.I.1994, leg. Riley (1 TAMU); Columbus, [29.70, -96.54], VIII.1906, leg. C. V. Riley (1 CNC). Orange County, Bridge City, [30.02, -93.83], 18.IV.1976, leg. A. Smetana (33 CNC); Orange County, 3 mi NW Orange, [30.15, -93.81], 17.IV.1976, leg. A. Smetana (3 CNC); Sabine Co., Sabine Nat. Forest, 3.2 mi E Hemphill, [31.35, -93.79], pine litter, 29.VII.1975, leg. Ashe (1 TAMU); Trinity County, 2.5 mi NW Apple Springs, [31.24, -95.01], 23.IV.1976, leg. A. Smetana (1 CNC); Trinity County, 12 mi SW Lufkin, [31.20, -94.99], 22.IV.1976, leg. A. Smetana (3 CNC). VIRGINIA: Arlington Co., Roaches Run, [38.86, -77.04]., 15.IV.2013, leg. J. R. Fisher (1 \& FMNH); Lee Co., Young-Fugate Cave, [36.79, -82.97], 25.VI.1963, leg. Holsinger (1 q CMNH). West Virginia: Glen Dale, [39.94, -80.75], grassy hillside, 29.VII.1973, leg. J. H. Redner (1 CNC).

Redescription. Measurements $\sigma^{\lambda}(\mathrm{n}=3)$: $\mathrm{HW}=1.67-$ 1.76 (1.70); $\mathrm{HL}=1.33-1.40$ (1.37); HL/HW 0.80-0.82 (0.80); PW = 2.20-2.24 (2.21); PL = 1.96-2.04 (1.99); PL/PW 0.89-0.91 (0.90); EW = 2.18-2.29 (2.24); EL = 1.93-2.07 (1.99); EL/EW 0.86-0.92 (0.89); EL/PL 0.991.01 (1.00); PW/HW 1.60-1.65 (1.62); forebody length 5.22-5.51 (5.36). ㅇ $(~(~ n=4): ~ H W=1.60-1.84$ (1.71); $\mathrm{HL}=1.29-1.47$ (1.38); HL/HW 0.80-0.83 (0.81); $\mathrm{PW}=$ 2.04-2.31 (2.19); PL=1.89-2.22 (2.04); PL/PW 0.91-0.96 (0.93); $\mathrm{EW}=2.09-2.44$ (2.30); $\mathrm{EL}=1.91-2.16$ (2.03); EL/EW 0.86-0.91 (0.88); EL/PL 0.97-1.01 (1.00); PW/ HW 1.57-1.60 (1.58); forebody length 5.09-5.84 (5.46).

Medium sized, robust species; body dark brown to black (Figs 9D,E).

Head black, distinctly transverse with eyes medium sized (EyL/TL = 1.61-1.88 (1.76)); microsculpture of transverse waves; no additional punctures between anterior frontal punctures (Fig. 6F); antennae and palpi reddish, all antennomeres elongate.

Thorax: pronotum dark brown to black, slightly wider than long, wider than head, with microsculpture of transverse waves; three punctures in dorsal row and one to two in sublateral row with its posteriormost puncture reaching just beyond level of first puncture of dorsal row; scutellum punctured and pubescent; elytra most often dark brown more rarely fully darkened, uniformly pubescent, slightly wider than long, roughly same length as pronotum; legs reddish brown with inner face of tibia and inner femur darkened.

Abdomen dark brown to black, tergites uniformly punctured, without clear iridescence.

Male. Aedeagus (Fig. 14E): paramere rather broad lanceolate without clear medial attenuation, reaching just beyond apex of median lobe, with sensory peg setae forming a distinct triangular patch; median lobe broad with gentle constriction to a point at apex, on parameral side with two small teeth protruding slightly basad, positioned at level near lower level of peg setae patch of paramere.
Differential diagnosis. Quedius laticollis is very similar in North America to the introduced species Q. molochinus, from which it can be confidently distinguished through
examination of male genitalia. Other differences include slightly more stout antennae with less elongate, darker middle antennomeres in Q. molochinus. Also, the elytra in Q. laticollis have a finer and denser punctation and are most often brownish-red, yellowish, or dark in coloration, where it is either brick red or dark in Q. molochinus. Quedius laticollis is also similar to Q. strenuus, which replaces Q. laticollis in the Great Plains. However, all examined specimens of Q. strenuus are completely dark with pale appendages, contrary to the rarely fully darkened specimens of Q. laticollis. For confident separation of Q. laticollis and Q. strenuus the position of the peg setae of the paramere are diagnostic as they form two distinct rows in Q. strenuus and a triangular patch in Q. laticollis. Quedius laticollis cannot be confused with any other North American Quedius as they either have interocular punctures on frons or (from other subgenera) have clear medial incision of labrum and abdomen notably tapering apicad.
Synonymic notes. Quedius neomolochinus Korge, 1962 was originally described from Baltimore most likely without knowledge of Gravenhorst's description of Q. laticollis, which was at that time a synonym of Q. molochinus. Korge (1962) also described a color variant (black with paler elytral suture and posterior margin) of Q. neomolochinus as Q. marginatus Korge, 1962 which is unavailable name according to the ICZN Article 45.6. Quedius marginatus was thought to be identical with Q. neomolochinus by Smetana (1971a) when he revised the North American fauna of the tribe Quediini. Later Smetana (1973) realized that Q. laticollis was identical to Korge's Q. neomolochinus and established the respective synonymy along with the lectotype designation for Q. laticollis. Our data fully corroborates such established concept of Q. laticollis.
Bionomics. Quedius laticollis is a rather common generalist found in a large variety of damp lowland habitats. Specimens have been reported from sphagnum in a tamarack swamp (Smetana 1971a), from sifting damp leaves in a deciduous forest in Florida, from flood-debris along the edges of swamps and marshes, from tufts of swamp grass dumped into water in Louisiana and Texas (Smetana 1978a), from forest floor litter (hardwood and pine) and from under rocks in Arkansas, and around cotton and soybean fields in Mississippi (Smetana 1990). One of us (AJB) has collected this species under large boulders in spring in an open scrubby alvar habitat with few oak trees (Manitoulin, Island, Ontario, Canada). This habitat has poorly drained, thin soil on exposed bedrock. Tishechkin \& Cline (2008) recorded a single specimen from a pocket gopher burrow in Louisiana, most likely an accidental occurrence.
Distribution. Quedius laticollis is found in Eastern North America from the Atlantic Ocean to the Great Plains, where it is replaced by Q. strenuus (ecoregion 8, Fig. 22). In the south it extends to northern Florida and along the Gulf Coast, but not into the subtropical regions of Texas, Florida and Mexico. To the north it extends to the central and north part of Lake Huron (Manitoulin Island) and follows the Saint Lawrence Valley to Quebec City, as the northernmost record.

Fig. 18. Distribution of Quedius afrofuliginosus Gusarov, 1991 (top), Q. curtipennis Bernhauer, 1908 (middle) and Q. fuliginosus (Gravenhorst, 1802) (bottom).

Fig. 19. Distribution of Quedius levicollis Brullé, 1832 (top), Q. hispanicus Bernhauer, 1898 and Q. pallipes Lucas, 1846 (middle), and Q.balticus Korge, 1960 (bottom).

Fig. 20. Distribution of Quedius molochinus (Gravenhorst, 1806), Q. meridiocarpathicus Smetana, 1958, and Q. vicinus (Ménétriés, 1832) (top), Q. subunicolor Korge, 1961 (middle), and Q. sundukovi Smetana, 2003 (bottom).

Fig. 21. Distribution of Quedius unicolor Kiesenwetter, 1847 (top), .Q. labradorensis Smetana, 1965 (middle), Quedius molochinoides-group (bottom). Barcoded specimens are denoted with +

Fig. 22. Distribution of Quedius molochinoides Smetana, 1965 (top), and Q. laticollis (Gravenhorst, 1802) and Q. strenuus Casey, 1915 (bottom).

Quedius strenuus Casey, 1915

(Figs 1, 4, 9F, 14F, 22)
Quedius strenuus Casey, 1915: 401 [Type locality: Texas]
References. Smetana (1971a): 132 (lectotype designation, characters and distribution); (1981): 638, (1990): 98 (distribution).

Type material examined. Lectotype: \uparrow, designated by Smetana (1971a) (USNM) [not examined], labelled: "Tex / Casey bequest 1925/ Type USNM 48279 / strenuus Csy".
Additional material examined. USA: KANSAS: Lawrence, below bridge, Kansas River, [38.96, -95.26], under chunk of mud flat, 16.X.1936, leg. M. W. Sanderson (1 CNC). Texas: Braunfels, [29.69, -98.11], 13.VI.1927, leg. Darlington (1 MCZ); Del Rio, [29.36, -100.9], 8.VII.1938, leg. R. L. Sailer (3 CNC); Kerrville, [30.02, -99.13], 11.IV.1998, leg. Chamberlain (3 TAMU); Uvalde County, [29.30, -99.70], 26.V.1938, leg. J. H. Robinson (1 CNC).

Redescription. Measurements $\widehat{\jmath}(\mathrm{n}=3)$: $\mathrm{HW}=1.60-$ 1.82 (1.73); HL = 1.33-1.51 (1.44); HL/HW 0.80-0.85 (0.83); $\mathrm{PW}=2.20-2.47$ (2.37); $\mathrm{PL}=2.02-2.22$ (2.14); PL/PW 0.89-0.92 (0.90); EW = 2.33-2.60 (2.50); EL
$=2.00-2.24$ (2.16); EL/EW 0.85-0.88 (0.86); EL/PL 0.99-1.03 (1.01); PW/HW 1.63-1.67 (1.65); forebody length 5.36-5.96 (5.73). $\circ \uparrow(\mathrm{n}=2)$: $\mathrm{HW}=1.69-1.76$ (1.72); $\mathrm{HL}=1.44-1.47$ (1.46); HL/HW 0.82-0.87 (0.85); $\mathrm{PW}=2.33-2.44$ (2.39); $\mathrm{PL}=2.07-2.09$ (2.08); PL/PW $0.85-0.89$ (0.87); $\mathrm{EW}=2.62-2.64$ (2.63); $\mathrm{EL}=2.18-2.29$ (2.23); EL/EW 0.83-0.87 (0.85); EL/PL 1.05-1.10 (1.07); PW/HW 1.59-1.69 (1.64); forebody length 5.71-5.82 (5.77).

Medium sized, robust species; body black (Fig, 9F).
Head black, distinctly transverse, with eyes medium sized (EyL/TL = 1.76-2.00 (1.88)); microsculpture of transverse waves; no additional punctures between anterior frontal punctures (Fig. 6F); all antennomeres elongate, antennae and palpi reddish.

Thorax: pronotum black, slightly wider than long, wider than head, with microsculpture of transverse waves; three punctures in dorsal row and one to two in sublateral row
with its posteriormost puncture reaching just beyond first puncture of dorsal row; scutellum punctured and pubescent; elytra black, uniformly pubescent, slightly wider than long, roughly as long as pronotum; legs reddish brown with inner face of tibia and femur darkened.

Abdomen black, tergites uniformly punctured, with slight iridescence.

Male. Aedeagus (Fig. 14F): paramere rather broad lanceolate, slightly protruding beyond apex of median lobe, with sensory peg setae forming two distinct short and wide rows of multiple punctures; median lobe broad with gentle constriction towards pointed apex, on parameral side with two small hooked teeth protruding slightly basad, positioned at level near lower level of peg setae patch of the paramere.
Differential diagnosis. Quedius strenuus is similar to Q. laticollis from which it normally differs by the completely dark body with pale appendages. For confident delimitation of both species from each other the position of the peg setae of the paramere can be used, which form two distinct rows in Q. strenuus and a triangular patch in Q. laticollis. Co-occurrence of the two species is unlikely since Q. strenuus replaces Q. laticollis to the west, in the forested areas of Great Plains of central-eastern and lowland areas of the southwestern United States. Quedius strenuus is also very similar to the introduced species Q. molochinus, which has not yet been found within the distribution range of Q. strenuus. Other differences include that, in Q. molochinus, the antennae are slightly stouter, less elongate, with darker middle antennomeres; as well as elytra are finer and more densely punctate, and either brick red or dark red (always dark in Q. strenuus). Quedius strenuus cannot be confused with other North American Quedius as they either have interocular punctures on frons or (those from other subgenera) have clear medial incision of labrum and abdomen notably tapering apicad.
Bionomics. Little is known about the bionomics of Q. strenuus. Based on current records, Q. strenuus is most likely restricted to lowland sites. As the region covered by its distribution is rather arid and most specimens were found near creeks, rivers, and lakes, it is likely to be strictly confined to moist microhabitats like wet flood or water-edge debris.
Distribution. Quedius strenuus is found across the Great Plains (ecoregion 9.4) and potentially a large part of lowland southwest United States (parts of ecoregion 10, Fig. 22). Only a few specimens, which we were not able to examine, were imprecisely recorded from lowland Southwest United State, from Arizona and Southern California. Of these, only a record from Lyman Lake in Apache County, Arizona (Smetana 1981) is exact and fully reliable. Earlier Smetana (1971a) mentioned subtle differences between these lowland specimens and ones from the Great Plains, but not clear enough to describe an additional species. The known range of Q. strenuus extends southwards almost to the border between USA and Mexico, northwards to Lawrence in Kansas. To the east Q. strenuus is replaced by Q. laticollis.

Key to species and species groups of Quedius sensu stricto

1 Presence of 4 or 6 additional setiferous punctures between anterior frontal punctures (Fig. K1A). Palearctic, two species introduced to the Nearctic. \boldsymbol{Q}. fuliginosus-group \qquad

- Presence of 2 or no additional setiferous punctures between anterior frontal punctures (Fig. K1B). 2
2 Presence of 2 additional setiferous punctures between anterior frontal punctures (Fig. K2A). Nearctic. Q. molochinoides-group 15
- No additional setiferous punctures between anterior frontal punctures (Fig. K2B). .3

3 Additional 1 to 3 punctures in the posterior half of the sublateral row (Fig. K3A). W Palearctic. Q. pallipesgroup .. 8

- No additional puncture in the posterior half of the sublateral row (Fig. K3B). .4
4 Palearctic. Q. molochinus-group 9
- Nearctic. Q. laticollis-group and Q. molochinus introduced from Palearctic. 19
5 Scutellum punctured and pubescent (Fig. K5A). W Palearctic, usually preferring warmer drier habitats. Quedius levicollis Brullé, 1832
- Scutellum unpunctured and glabrous (Fig. K5B).
. .6

K4A
K4B

K5A
K5B

6 Head with 4 additional punctures between posterior frontal punctures, but without additional puncture between anterior and posterior frontal punctures (Fig. K6A). Median lobe without apical ridge. Paleartic. Introduced to multiple Nearctic localities. .7

- Presence of 4 additional punctures between posterior frontal punctures and one additional puncture on either side between anterior and posterior frontal punctures (Fig. K6B). Median lobe with apical ridge (Fig. 14A). Palearctic, known only from North Africa and the islands of Sardinia and Corse. \qquad
Quedius afrofuliginosus Gusarov, 1991
7 Basal three antennomeres at least slightly darkened. Eyes clearly protruding making the head seem more rectangular wider across (Fig. K7A). Apex of median lobe not laterally flattened (Fig. 14D). Palearctic. Introduced to E Canada. Prefers wetter humus rich habitats. Paleartic. Introduced to multiple Nearctic localities.
.. Quedius fuliginosus (Gravenhorst, 1802)
- Basal three antennomeres completely pale. Eyes not clearly protruding making the head seem round (Fig. K7B). Apex of median lobe laterally flattened (Fig. 14C). Paleartic. Introduced to multiple Nearctic localities. Quedius curtipennis Bernhauer, 1908
8 Sides of median lobe apex folded with distinct tooth situated at lower part (Fig. 15C). Western Europe along Atlantic Coast from Denmark to Iberia and inland in Southern France and Iberian Peninsula, also on the islands of Madeira, Azores, Canaries, and Balearic (Fig. K8A).

Quedius hispanicus Bernhauer, 1898

- Sides of median lobe apex folded with distinct tooth situated at medial part (Fig. 15D). North Africa, Italy and islands of Sardinia and Corse (Fig. K8B)
. Quedius pallipes Lucas, 1846
9 Elytra shortened, distinctly shorter than pronotum (Fig. K9A), obviously brachypterous species without whitish apical seam on abdominal tergite VII (Fig. 11F). East Palearctic. \qquad
Quedius sundukovi Smetana, 2003
- Elytra normal, not shortened, about as long as pronotum (Fig. K9B), with whitish apical seam on abdominal tergite VII. .. 10
10 Basal three antennomeres at least slightly darkened (Fig. K10A).
- Basal three antennomeres pale (Fig. K10B). 13

11 Elytra most often reddish, very rarely darkened. Appendages only slightly darkened. Tibia, tarsi and apical antennomeres of antennae pale reddish brown (Figs K11A, 11E). Found near water bodies in Central-Eastern Europe and Middle Asia (Fig. 23). ..

Quedius balticus Korge, 1960

- Elytra always dark. Appendages darkened. Tarsi slightly paler brown to dark brown at most (Figs K11B, 10E-F). Found at higher elevations or latitudes (Figs 25, 27). .. 12
12 Head disc with fine isodiametric microsculpture (Fig. K12A). Without C-sclerite of the internal sac (Fig.

16A). Found at alpine sites of Central and Southern Europe (Fig. K12C).

Quedius unicolor Kiesenwetter, 1847

- Head disc most often with microsculpture of fine transverse waves, rarely isodiametric (Fig. K12B). With clear C-sclerite of the internal sac (Fig. 15C). Found disjunct in boreal Scandinavia and Russia, as well as alpine in Altai Mountains and Transbaikalia (Fig. K12D). Quedius subunicolor Korge, 1961
13 Body brown. Elytra yellowish red. Apex of paramere pointing ventral, away from median lobe in form of a small blunt hook (Figs K13B, 15A). Central Anatolia, Middle East, Transcauscasus, Central Asia (Fig. K13A). Quedius vicinus (Ménétriés, 1832)
- Body most often black, or at most brownish. Elytra brick or brownish red. Apex of paramere straight, not pointing ventrad, away from median lobe (Figs K13C-D, 15D, 15F). Distribution more northern (Figs K14A-B) 14
14 C-shaped sclerite of internal sac without spine-like basal extension (Figs K13C, 15F). SE European distribution (Fig. K14A).
.......... Quedius meridiocarpathicus Smetana, 1958
- C-shaped sclerite of internal sac with spine-like basal extension (Figs K13D, 15D). N Palearctic distribution (Fig. K14B).

Quedius molochinus (Gravenhorst, 1806)
15 Basal three antennomeres pale and antennae more elongate (antennomere 10 clearly longer than wide) (Fig. K15A). Elytra light to dark brown. Generally larger. Forebody length $5.49-5.93$ (5.78) mm (Fig. 13F). Boreal North America (Fig. 28).

Quedius labradorensis Smetana, 1965

- Basal three antennomeres darkened and antennae more robust (antennomere 10 more or less transverse) (Fig. K15B). Elytra black or reddish. Generally smaller. Forebody length 4.97-5.86 (5.39) mm.

16
16 Paramere with basal attenuation and broadening towards apex forming a spoon like shape, peg setae situated in a semi-circle along the edge of the paramere (Figs K16A, 8, 17B). Coastal to mid elevation from Oregon to Southern Alaska including Vancouver and Haida Gwaii.

Quedius horni Hatch, 1957

- Paramere only with at most slight attenuation forming a lanceolate shape (Figs K16B-D).17

17 Distributed across Boreal North America. South of the Northern Rocky Mountains (Fig. K17A). Teeth of median lobe clearly folded inwards (Figs K16B, 17E). \qquad Quedius molochinoides Smetana, 1965

- Central and Southern Rocky Mountains, Cascades, Blue Mountains and Sierra Nevada (Fig. K17B). Teeth of median lobe either protruding or not clearly formed (Figs K16C-D). 19

18. Found in the Cascades, Blue Mountains and Sierra Nevada (Fig. K18A). Paramere and median lobe clearly broader (Figs K16C, 17D).

Quedius lanei Hatch, 1957

K15A

- Found in Central and Southern Rocky Mountains (Fig. K18B). Paramere and median lobe clearly more slender (Figs K16D, 17C).

Quedius altanai sp. nov.
19 Paramere rather slender and clear C-sclerite of the internal sac (Figs K19A, 15D). Introduced in parts of Eastern North America, seems to be spreading. \qquad
Quedius molochinus (Gravenhorst, 1806)

- Paramere rather broad and No C-sclerite of internal sac (Figs K19B-C). Q. laticollis-group 20
20 Peg setae of paramere forming a solid triangular field, usually with two wide and short extensions posteriorly (Figs K20A, 16E). E North America (Fig. K20B). Quedius laticollis (Gravenhorst, 1802)
- Peg setae of paramere arranged into two short longitudinal rows, which more or less diverge posteriorly (Figs K20C, 16F). Great American Plains (Fig. K20D). Quedius strenuus Casey, 1915

Prospects for future

This revision clarifies distributions for all species of a clear-cut monophyletic group in Quediini, which is an excellent model for exploring diversification of terrestrial invertebrates within the Holarctic biogeographic region. Some species of Quedius s. str. were included in the dated phylogenetic analysis by Brunke et al. (2017) who estimated the tribe Quediini to be around 46.6 My old (median value) and the split between the Q. molochinus- and Q. pallipes-groups of Quedius s. str. to occur around 6.6 Mya (median value). The biogeographical and ecological heterogeneity of the species groups within Quedius s. str. hints to possible extinctions and distribution shifts in the course of its evolution. For example, Q. unicolor is strictly associated with higher elevations in the European mountains and may have evolved as a more widely distributed lineage adapted to a colder climate that has now retracted to refugia in the European alpine zones. Others, like for example the Q. pallipes-group, have species strictly associated with coastal and riverine environments and may have originated once their common ancestor colonized these specialized niches during other climatic shifts, for example periods of aridization. The phylogenetic pattern of Quedius s. str. suggests that a single dispersal event from Eurasia to North America, most likely across Beringia resulted in the evolution and diversification of the Q. laticollis- and Q. mo-lochinoides-groups in the Nearctic region. The highly debated timing and palaeoclimatic conditions of the landbridges that once connected Eurasia and North America (Sanmartín et al. 2001, Swanson 2003, Wen et al. 2016, Graham 2018, Schär et al. 2018) can be addressed by a rigorous biogeographic study of Quedius s. str.

Acknowledgements

We sincerely thank M. Salnitska and journal editors J. Hájek, P. Kment and M. Fikáček for extensive comments and suggestions which all greatly improved the manuscript. We are also very thankful to our late colleagues A. Smetana and V. Assing who also provided very useful feedback in their reviews.Thanks to all the curators and collection managers

that made their specimens available, these are mentioned in the Method section. Especially thanks to L. Harold (Musée des Confluences, Lyon, France), S. Tarasov, J. Mattila, and P. Malinen (Finnish Museum of Natural History, Helsinki, Finland), M. Salnitska (Russian Academy of Sciences, Zoological Institute, St. Petersburg, Russia) and S. Ware and M. Turcatel (Field Museum of Natural History, Chicago, Illinois, USA) for photographing various types here published in supplementary. Chris Schmidt (Canadian National Collection of Insects, Ottawa, Ontario, Canada) is thanked for providing literature and ideas regarding biogeography in the Northern Rockies. Thomas Pape (Natural History Museum of Denmark, Copenhagen, Denmark) is thanked for help with nomenclatural issues. Adriano Zanetti (Museo Civico di Storia Naturale, Verona, Italy) helped with checking Italian collections for Q. afrofuliginosus and provided a specimen of Q. unicolor for barcoding, as well as a photograph of its habitat published herein. Mikko Pentinsaari (University of Guelph, Guelph, Ontario, Canada) is thanked for providing help and assistance with faulty sequences in the BOLD database. All collection managers mentioned in the material section were helpful with loan and visits to collections, many thanks for that. Thanks to all the people that have historically written and recorded specimens, both for their literature contributions and for their collecting of specimens to natural history museums. Without these continues works it would have been impossible today to make such a detailed study of the subgenus. AKH has received funding from Danish Ministry for Culture's Research Fund (KFU grant FORM.2018-0006) for which he is grateful. AKH and AS field work for this revision was conducted largely under support of the Carlsberg Foundation expedition grant. AS work with collections in Russia was supported by the Russian Science Foundation grant 20-14-00097.

Electronically archived data

Additional data (photos of types, list of all specimens exemined, and list of data adopted from literature) is available at FigShare:
https://doi.org/10.6084/m9.figshare.c.6307929.v1

References

ABACIGIL T. Ö., VARLI S. V. \& TEZCAN S. 2013: Faunistic studies on Staphylininae (Coleoptera: Staphylinidae) in Kazdağları (Balıkesir Province) in Turkey. Munis Entomology and Zoology 8: 415-433.
ALLEN A. A. 1990: More ecological notes in Quedius spp. (Staphylinidae). Coleopterist's Newsletter 41: 2-5.
ANLAȘ S. 2009: Distributional checklist of the Staphylinidae (Coleoptera) of Turkey, with new and additional records. Linzer Biologische Beiträge 41: 215-342.
ANLAŞ S. \& ROSE A. 2009: Some additional notes about Staphylininae (Coleoptera: Staphylinidae) fauna of Turkey. Munis Entomology and Zoology 4: 327-333.
ASSING V. 2001: Kurzflügelkäfer. Natur und Landschaft im Landkreis Hildesheim 2: 72-76.
ASSING V. 2005: Two new species and new records of Staphylinidae from the Greek island Lesbos (Insecta: Coleoptera). Linzer Biologische Beiträge 37: 1035-1046.
ASSING V. 2015: On the Staphylinidae (Coleoptera) of Crete II. Seven new species, a new synonymy, and additional records. Stuttgarter Beiträge zur Naturkunde 8: 95-112.
ASSING V. 2016: On the Staphylinidae of the Greek island Karpathos (Insecta: Coleoptera). Linzer Biologische Beiträge 48: 235-263.
ASSING V. \& FELDMANN B. 2012: On the Staphylinidae of Israel (Insecta: Coleoptera). Linzer Biologische Beiträge 44: 351-363.
ASSING V. \& SCHÜLKE M. 2019: The Staphylinidae of Armenia and Nagorno-Karabakh (Coleoptera). Beiträge zur Entomologie 69: 91-173.
ASSING V. \& WUNDERLE P. 2001: On the Staphylinidae of Cyprus (Coleoptera). Entomologische Zeitschrift 111: 34-41.
BANDELT H., FORSTER P. \& RÖHLA. 1999: Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37-48.
BEBERMANS J., FAGOT J., \& FRANCIS F. 2016: Contribution à l'écologie des coléoptères coprophiles et coprophages en Belgique: diversité spécifique, préférences stercorales et phénologie. Entomologie Faunistique-Faunistic Entomology 69: 125-138.
BERNHAUER M. 1898: Neue Staphyliniden aus Europa. Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien 48: 338-341.
BERNHAUER M. 1900: Siebente Folge neuer Staphyliniden aus Europa, nebst Bemerkungen. Verhandlungen der Kaiserlich-Königlichen Zoo-logisch-Botanischen Gesellschaft in Wien 50: 38-50.
BERNHAUER M. 1908: Beiträge zur Kenntnis der paläarktischen Staphyliniden-Fauna. I. Münchener Koleopterologische Zeitschrift 3: 320-335.
BERNHAUER M. 1914: Neue Staphyliniden der paläarktischen Fauna. Coleopterologische Rundschau 3: 65-68.
BERNHAUER M. \& SCHUBERT K. 1916: Pars 67. Staphylinidae V. In: SCHENKLING S. (ed.): Coleopterorum Catalogus. W. Junk, Berlin, pp. 409-498.
BLAND K. P. \& SINCLAIR M. 1997: Beetles in toad faeces. Entomologist's Record and Journal of Variation 109: 204.
BLÜMML E. K. 1898: Eine neue Käfer-Variation. Illustrierte Zeitschrift für Entomologie 3: 216.
BOHÁČ J. 1988: New and little known Staphylininae (Coleoptera, Staphylinidae). Entomologicheskoe Obozrenie 67: 549-558 (in Russian with English summary).
BOHÁČ J. \& MATĚJ́ČEK J. 2004: Biodiversity of staphylinid beetles (Coleoptera, Staphylinidae) in the Bohemian Forest - recent state, endangered species and their biotopes. Aktuality Šumavského Výzkumu 2: 218-220 (in Czech with English abstract).
BORDONI A. 1974: Contributo alla conoscenza degli Staphylinidae (Coleoptera). XXXIX. Intorno ad alcune specie poco note della collezione dell'Istituto de Entomologia Agraria della Universita di Pisa. Frustula Entomologica 12: 1-18.
BORDONI A. 1976a: Studi sulla sistematica e la geonemia del genere Quedius Steph. IV. I Quedius s. str. della fauna Italiana (Col., Staphylinidae). Redia 59: 85-107.
BORDONI A. 1976b: Quarto contributo alla conoscenza degli Staphylinidae della Turchia (Coleoptera). Fragmenta Entomologica 12:

221-239.
BORDONI A. 1982: Coleotteri stafilinidi raccolti in grotta da Sergio Puddu nella Sardegna centro meridionale. Bollettino della Società Sarda di Scienze Naturali 21: 137-147.
BORDONI A. 1984: Note su alcuni stafilinidi del Libano (Coleoptera). Fragmenta Entomologica 17: 331-345.
BORGES P. A. V. 1990: A checklist of the Coleoptera from the Azores with some systematic and biogeographic comments. Boletim do Museu Municipal do Funchal 42: 87-136.
BRITTEN H. 1944: Quedius subfuliginosus (Coleoptera, Staphylinidae) a species new to science. North Western Naturalist 18: 289-291.
BRULLÉ G. A. 1832-1833: Expédition scientifique de Morée. Section des Sciences Physiques. Tome III. 1.re Partie. Zoologie. Deuxième Section. Des animales articulés. F.G. Levrault, Paris, 400 pp. [Pp. 1-288 published in 1832, pp. 289-400 in 1833.]
BRUNKE A., CHATZIMANOLIS S., SCHILLHAMMER H. \& SOLODOVNIKOV A. 2015: Early evolution of the hyperdiverse rove beetle tribe Staphylinini (Coleoptera: Staphylinidae: Staphylininae) and a revision of its higher classification. Cladistics 32: 427-451.
BRUNKE A. J., CHATZIMANOLIS S., METSCHER B. D., WOLF--SCHWENNINGER K. \& SOLODOVNIKOV A. 2017: Dispersal of thermophilic beetles across the intercontinental Arctic forest belt during the early Eocene. Scientific Reports 7: 1-8.
BRUNKEA. J. \& MARSHALL S. A. 2011: Contributions to the faunistics and bionomics of Staphylinidae (Coleoptera) in northeastern North America: discoveries made through study of the University of Guelph Insect Collection, Ontario, Canada. ZooKeys 75: 29-68.
BRUNKE A. J., SALNITSKA M., HANSEN A. K., ZMUDZINSKA A., SMETANA A., BUFFAM J. \& SOLODOVNIKOV A. 2020: Are subcortical rove beetles truly Holarctic? An integrative taxonomic revision of north temperate Quedionuchus (Coleoptera: Staphylinidae: Staphylininae). Organisms Diversity and Evolution 20: 77-116.
BRUNKE A. J., ŻYŁA D., YAMAMOTO S. \& SOLODOVNIKOV A. 2019: Baltic amber Staphylinini (Coleoptera: Staphylinidae: Staphylininae): a rove beetle fauna on the eve of our modern climate. Zoological Journal of the Linnean Society 187: 166-197.
BRUNKE A. J., HANSEN A. K., SALNITSKA M., KYPKE J. L., ESCALONA H., CHAPADOS J. T., EYRES J., RICHTER R., SMETANA A., ŚLIPIŃSKI A., ZWICK A., HÁJEK J., LESCHEN R. A. B., SOLODOVNIKOV A. \& DETTMAN J. R. 2021. The limits of Quediini at last: a rove beetle mega-radiation resolved by comprehensive sampling and anchored phylogenomics (Coleoptera: Staphylinidae: Staphylininae). Systematic Entomology 46: 396-421.
BRUNET B. M., BLACKBURN G. S., MUIRHEAD K., LUMLEY L. M., BOYLE B., LEVESQUE R. C., CUSSON M. \& SPERLING F. A. 2017: Two's company, three's a crowd: new insights on spruce budworm species boundaries using genotyping-by-sequencing in an integrative species assessment (Lepidoptera: Tortricidae). Systematic Entomology 42: 317-328.
BURAKOWSKI B., MROCZKOWSKI M., STEFANSKA J. \& SZUJECKI A. 1980: Chrzązzcze: Coleoptera. Tom 7: Staphylinidae, Część 2. Katalog Fauny Polski 34: 1-272 (in Polish)
CASEY T. L. 1915: Studies in some staphylinid genera of North America. Memoirs on the Coleoptera 6: 395-450.
CICERONI A. \& ZANETTI A. 1995: Coleoptera Polyphaga III (Staphylinidae). Pp. 10-33. In: MINELLI A., RUFFO S. \& LA POSTA S. (eds.). Checklist delle Specie della Fauna Italiana 48. Edizioni Calderini, Bologna, 65 pp.
COGNATO A. I. 2006: Standard percent DNA sequence difference for insects does not predict species boundaries. Journal of Economic Entomology 99: 1037-1045.
COIFFAIT H. 1954: Contribution à la connaissance de la faune cavernicole et endogée du Liban. (Mission H. Coif- fait au Liban, 1951). II. Staphylinidés nouveaux. Notes et Mémoires sur le Moyen-Orient 5: 155-162.
COIFFAIT H. 1955: Biospeologica LXXV. Mission Henry Coiffait au Liban (1951). 6. Coléoptères cavernicoles et endogés. Archives de Zoologie Expérimentale et Générale 91: 423-436.
COIFFAIT H. 1961: Le complexe de Quedius molochinus (Grav.). Bulletin de la Société d'Histoire Naturelle de Toulouse 96: 47-60.
COIFFAIT H. 1963: Sur quelques types de Quedius de Mulsant et Rey.

Bulletin de la Société d'Histoire Naturelle de Toulouse 98: 421-425. COIFFAIT H. 1964: Deux nouveaux Quedius s. str. de la région méditerranéenne occidentale. Revue Française d'Entomologie 31: 293-296.
COIFFAIT H. 1970: Staphylinides égéidiens. Entomologiste 26: 61-68.
COIFFAIT H. 1971: Quatre nouveaux Staphylinidae de la faune de France. Nouvelle Revue d'Entomologie 1: 173-175.
COIFFAIT H. 1973: Staphylinides nouveaux ou mal connus du Maroc. Bulletin de la Société des Sciences Naturelles et Physiques du Maroc 53: 269-292.
COIFFAIT H. 1978: Coléoptères staphylinides de la région paléarctique occidentale. III. Sous famille Staphylininae, tribu Quediini; sous famille Paederinae, tribu Pinophilini. Nouvelle Revue d'Entomologie, Supplement 8(4): 1-364.
COMMISSION FOR ENVIRONMENTAL COOPERATION. 1997. Ecological regions of North America: toward a common perspective. Commission for Environmental Cooperation, Montreal, Quebec, Canada. 71 pp. Map (scale 1:12,500,000). Revised 2006. Available from: https://www.epa.gov/eco-research/ecoregions-north-america
CUPPEN J., VORST O., VAN NUNEN F., DROST B., VAN MAANEN B., LODEWIJCKX M., VAN ZANEN B., HEETMAN F. \& THREELS A. 2011: Verslag weekendexcursie Zaanstad, 3-5 september 2010. [Report on weekend excursion Zaanstad, 3-5 September 2010]. Sektie Everts Info 93: 7-16 (in Dutch).
CURTIS J. 1829: A guide to an arrangement of British insects; being a catalogue of all the named species hitherto discovered in Great Britain and Ireland. F. Westley and A. H. Davis, London, 256 pp.
CURTIS J. 1837: A guide to an arrangement of British insects; being a catalogue of all the named species hitherto discovered in Great Britain and Ireland. Second edition, greatly enlarged. J. Pigot \& Co., London, 294 pp.
DAPKUS D. \& TAMUTIS V. 2008: Assemblages of beetles (Coleoptera) in a peatbog and surrounding pine forest. Baltic Journal of Coleopterology 8: 31-40.
DEJEAN P. F. M. A. 1833: Catalogue des Coléoptères de la collection de M. le Comte Dejean. (2nd edition). Méquignon-Marvis Père et Fils, Paris, 176 pp.
DELAHON P. 1914: Nachträge zu "Schilskys Systematischem Verzeichnis der Käfer Deutschlands" von 1909 mit besonderer Berücksichtigung der Formen der Mark Brandenburg, sowie einige sonstige Bemerkungen über Käfer aus der Mark (Col.). Deutsche Entomologische Zeitschrift 1914: 620-623.
DELAHON P. 1915: Nachträge zu "Schilskys Systematischem Verzeichnis der Käfer Deutschlands" von 1909 mit besonderer Berücksichtigung der Formen der Mark Brandenburg, sowie einige sonstige Bemerkungen über Käfer aus Deutschland (Col.). Deutsche Entomologische Zeitschrift 1915: 394-396.
DERUNKOV A. V. 2005: Changes in species diversity of rove beetles (Coleoptera, Staphylinidae) depending on the age of pine plantations in central Belarus. Russian Journal of Ecology 36: 277-284. [Translation of Russian original in Ekologiya 36: 306-313.]
DOLNÝ A. 2000: Ecological-faunistic characteristics of the communities of beetles (Coleoptera) at the coal-mine spoils. Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium 38: 47-77.
DOWNIE N. M. \& ARNETT R. H. JR. 1996: The beetles of northeastern North America. Vols. 1, 2. Sandhill Crane Press, Gainesville, Florida, 1721 pp .
DUFOUR L. 1843: Excursion entomologique dans les montagnes de la vallée d'Ossau. Bulletin de la Société des Sciences, Lettres et Arts de Pau 3: 5-118.
DUPUIS J. R., BRUNET B. M. T., BIRD H. M., LUMLEY L. M., FAGUA G., BOYLE B., LEVESQUE R., CUSSON M., POWELL J. A. \& SPERLING F. A. H. 2017. Genome-wide SNPs resolve phylogenetic relationships in the North American spruce budworm (Choristoneura fumiferana) species complex. Molecular Phylogenetics and Evolution 111: 158-168.
DUPUIS J. R., ROE A. D. \& SPERLING F. A. 2012: Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Molecular Ecology 21: 4422-4436.
DRUGMAND D. 1987: Coléoptères Staphylinidae nouveaux pour la faune belge. Bulletin et Annales de la Société Royale Belge d'Entomologie 123: 310-312.

DVOŘÁK M. 1965: Zajímavé nálezy drabčíků na Slovensku (Col., Staphylinidae). Interessante Funde einiger Staphyliniden-Arten aus der Slowakei (Col., Staphylinidae). Zborník Slovenského Národného Múzea 11: 88-92 (in Czech).
EICHELBAUM F. 1914: Untersuchungen über den Bau des männlichen und weiblichen Abdominalendes der Staphylinidae (Fortsetzung). Zeitschrift für Wissenschaftliche Insektenbiologie 10: 25-28, 94-98, 223-228, 331-339.
EICHELBAUM F. 1915: Untersuchungen über den Bau des männlichen und weiblichen Abdominalendes der Staphylinidae (Fortsetzung). Zeitschrift für Wissenschaftliche Insektenbiologie 11: 91-98, 245-248, 313-319.
ERICHSON W. F. 1839-1840: Genera et species staphylinorum insectorum coleopterorum familiae. F. H. Morin, Berlin, 954 pp. (in Latin) [Pp. 1-400 published in 1839, pp. 401-954 published in 1840.]
EYRE M., LOTT D. \& LUFF M. 2001: The Rove Beetles (Coleoptera, Staphylinidae) of exposed riverine sediments in Scotland and Northern England: Habitat classification and conservation aspects. Journal of Insect Conservation 5: 173.
FAGEL G. 1948: Contribution à la connaissance des coléoptères de Belgique. Xe note. Qu'est le Staphylinus fuliginosus de Gravenhorst? Bulletin et Annales de la Société Entomologique de Belgique 84: 196-199.
FAIRMAIRE L. 1862: Miscellanea entomologica. Quatrième partie. Annales de la Société Entomologique de France, Quatrième Série 1: 577-596.
FAIRMAIRE L. \& COQUEREL C. 1860: Essai sur les coléoptères de Barbarie. Deuxième partie. Annales de la Société Entomologique de France, Troisième Série 8: 145-176.
FAIRMAIRE L. \& LABOULBĖNE J. J. A. 1856: Faune entomologique française ou description des insectes qui se trouvent en France. Coléoptères 1: 371-665.
FALDERMANN F. 1835: Additamenta entomologica ad faunam Rossicam in itineribus Jussu Imperatoris Augustissimi annis 1827-1831 a Cl . Ménétriés et Szovitz susceptis collecta, in lucem edita. Coleoptera Persico-Armeniaca. Nouveaux Mémoires de la Société Impériale des Naturalistes de Moscou 4: 1-310.
FAUVEL A. 1865: Énumeration des insectes recueillis en Savoie et en Dauphine (1861-1863) et descriptions d'espèces nouvelles. Bulletin de la Société Linnéenne de Normandie 9: 253-321.
FAUVEL A. 1869a: Remarques synonymiques sur les staphylinides du Catalogus Coleopterorum de MM. v. Harold et Gemminger. Abeille, Mémoires d'Entomologie 5: 479-494.
FAUVEL A. 1869b: Remarques synonymiques. II. Note sur les brachélytres. Abeille, Mémoires d'Entomologie 6: 150-152.
FAUVELA. 1874: Faune Gallo-Rhénane ou description des insectes qui habitent la France, la Belgique, la Hollande, les provinces Rhénanes et le Valais, avec tableaux synoptiques et planches gravées (suite). Bulletin de la Société Linnéenne de Normandie, 2^{e} Série 8: 167-318.
FAUVELA. 1878: Les staphylinides de l'Afrique boréale. Bulletin de la Société Linnéenne de Normandie, 3^{e} Série 2: 83-162.
FAUVEL A. 1886: Les staphylinides du nord de l'Afrique. Revue d'Entomologie 5: 9-100.
FAUVEL A. 1902: Catalogue des Staphylinides de la Barbarie de la Basse-Égypte et des Iles Açores, Madères, Salvages et Canaries Revue d'Entomologie 21: 45-189.
FERNÁNDEZ J. M. D. 2014: Catálogo de los Coleoptera de la Sierra de Collserola (Barcelona, NE de España): primeros resultados Arquivos Entomolóxicos 10: 235-264.
FIORI A. 1915: Appunti sulla fauna coleotterologica dell'Italia meridionale e della Sicilia (Continuazione). Rivista Coleotterologica Italiana 13: 5-17, 57-84.
FOWLER W. W. 1888: The Coleoptera of the British Islands. A descriptive account of the families, genera, and species indigenous to Great Britain and Ireland, with notes as to localities, habitats, etc. Vol. II. Staphylinidae. L. Reeve \& Co., London, 444 pp.
FRANK J. H. 1969: The larva and biology of Quedius picipes (Mann.) and notes on the biology of five other Quedius species (Col. Staphylidae). Entomologist's Monthly Magazine 104: 263-268.
FRANK J. H. 1982: The parasites of the Staphylinidae (Coleoptera). A contribution towards an encyclopedia of the Staphylinidae. Technical

Bulletin, Agricultural Experiment Stations, Institute of Food and Agricultural Sciences, University of Florida 824: 1-118.
FRANZ H. 1987: Beitrag zur Coleopterenfauna Cyperns. Sitzungsberichte der Österreichischen Akademie der Wissenschaften, MathematischNaturwissenschaftliche Klasse (Abt. I) 196: 67-87.
FREUDE H., HARDE K. W. \& LOHSE G. A. 1964: Die Käfer Mitteleuropas. Band 4. Staphylinidae I. (Micropeplinae bis Tachyporinae). Goecke \& Evers, Krefeld, 264 pp.
FÜLÖP D. 2005: Rove beetles (Coleoptera: Staphylinidae) of the Tisza Valley. Vegetation and Fauna of Tisza River Basin I. Tiscia, Monograph Series 7: 97-147.
GANGLBAUER L. 1895: Die Käfer von Mitteleuropa. Die Käfer der österreichisch-ungarischen Monarchie, Deutschlands, der Schweiz, sowie des französischen und italienischen Alpengebietes. Zweiter Band. Familienreihe Staphylinoidea, I. Theil: Staphylinidae, Pselaphidae. Carl Gerold's Sohn, Vienna, 881 pp.
GHAHARI H., ANLAȘ S., SAKENIN H., OSTOVAN H. \& TABARI M. 2009: A contribution to the rove beetles (Coleoptera: Staphylinoidea: Staphylinidae) of Iranian rice fields and surrounding grasslands. Linzer Biologische Beiträge 41: 1959-1968.
GHAHARI H., MAKHAN D. \& HAWKESWOOD T. J. 2012: A faunistic survey on some families of Coleoptera from cotton fields of northern Iran. Calodema 203: 1-7.
GEMMINGER M. \& HAROLD E. von 1868: Catalogus Coleopterorum hucusque descriptorum synonymicus et systematicus. Tom. II. Dytiscidae, Gyrinidae, Hydrophilidae, Staphylinidae, Pselaphidae, Gnostidae, Paussidae, Scydmaenidae, Silphidae, Trichopterygidae, Scaphidiidae. E. H. Gummi, Monachii, pp. 425-752.
GOLDEN D. M. \& CRIST T. O. 2000: Experimental effects of habitat fragmentation on rove beetles and ants: patch area or edge? Oikos 90: 525-538.
GORESLAVETS I. N. 2010: Materialy po faune i ekologii stafilinid (Coleoptera, Staphylinidae) zhigulevskogo biosfernogo zapovednika. [Materials on the fauna and ecology of staphylinids (Coleoptera, Staphylinidae) of the Zhigulevsky biosphere reserve]. Samarskaia Luka 19: 98-121 (in Russian).
GORESLAVETS I. N. 2016: Ecologic and faunistic characteristics of rove beetles (Coleoptera, Staphylinidae) inhabitats in ant-hills in Samara region. Samarskaia Luka 25: 133-151 (in Russian, English abstract).
GRAHAM A. 2018. The role of land bridges, ancient environments, and migrations in the assembly of the North American flora. Journal of Systematics and Evolution 56: 405-429.
GRAVENHORST J. L. C. 1802: Coleoptera Microptera Brunsvicensia nec non exoticorum quotquot exstant in collectionibus entomologorum Brunsvicensium in genera, familiae et species distribuit. C. Reichard, Brunsuigae, 206 pp.
GRAVENHORST J. L. C. 1806: Monographia Coleopterorum Micropterorum. H. Dieterich, Gottingae, 248 pp .
GRAVENHORST J. L. C. 1847: Uebergänge und Verwandtschaften unter den Arten der Gattung Quedius. Entomologische Zeitung (Stettin) 8: 211-224, 226-237.
GREBENNIKOV K. A. 2001: Fauna and ecological characteristics of staphylinids (Coleoptera, Staphylinidae) of southern Volga area (subfamily Staphylininae). Entomologicheskoe Obozrenie 80: 603-610 (in Russian, English summary).
GRIDELLI E. 1924: Studi sul genere Quedius Steph. (Col. Staph.). Secondo contributo. Specie della regione paleartica. Memorie della Società Entomologica Italiana 3: 5-112.
GUSAROV V. I. 1991: Novye i maloizvestnye palearkticheskie stafilinidy (Coleoptera: Staphylinidae) [New and little-known Palearctic rove beetles (Coleoptera: Staphylinidae)] Soobshchenie 3: 3-12 (in Russian).
GUSAROV V.I. 1993: New and little-known Palaearctic Staphylinidae (Coleoptera). Zoosystematica Rossica 1: 65-74.
GYLLENHAL L. 1810: Insecta Suecica descripta. Classis I. Coleoptera sive Eleutherata. Tomi I, Pars II. F. J. Leverentz, Scaris, xix + $1+$ 660 pp .
GYLLENHAL L. 1827: Insecta Suecica descripta. Classis I. Coleoptera sive Eleutherata. Tom. I, Pars IV. Fleischer, Lipsiae, viii +762 pp.
HÄNEL K. 1913. Beiträge zur Fauna Mitteleuropas. Entomologische Blätter 9: 98-99.
HANSEN V. 1952: Biller XVI. Rovbiller 2. Del. [Coleoptera XVI. Sta-
phylinidae part 2]. Danmarks Fauna 58: 1-251 (in Danish).
HANSEN V. 1962: Ændringer i vor billefauna. [Changes to our beetle fauna]. Entomologiske Meddelelser 31: 319-322 (in Danish).
HARDY J. 1851: Family 1: Staphylinidae, Leach. Pp. 21-96. In: HARDY J. \& BOLD T. J. A: Catalogue of the insects of Northumberland and Durham (Part ii). Transactions of the Tyneside Naturalists' Field Club 2: 21-97.
HATCH M. H. 1957: The beetles of the Pacific Northwest. Part II: Staphyliniformia. University of Washington Publications in Biology 16 (2): 1-384.
HAVELKA J. 1964: Beitrag zur Kenntnis der Coleopteren der Slowakei. 1. Teil (Nachträge zum Katalog Coleopter von J. Roubal). Acta Rerum Naturalium Musei Nationalis Slovenici Bratislava 10: 66-123.
HEER O. 1840: Fauna Coleopterorum Helvetica. Pars I. Fasc. 2. Orelii, Fuesslini et Sociorum, Turici, pp. 145-360.
HENDRICH L., MORINIÈRE J., HASZPRUNAR G., HEBERT P. D. N., HAUSMANNA., KÖHLER F. \& BALKE M. 2015: A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD. Molecular Ecology Resources 15: 795-818.
HERMAN L. H. 2001: Catalog of the Staphylinidae (Insecta: Coleoptera). 1758 to the end of the second millennium. VI. Staphylinine Group (Part 3). Staphylininae: Staphylinini: (Quediina + Xanthopygina), Xantholinini. Staphylinidae Incertae Sedis. Fossils. Bulletin of the American Museum of Natural History 265: 3021-3840.
HINTON H. E. 1945: A monograph of the beetles associated with stored products. Vol. 1. British Museum (Natural History), London, 443 pp.
HINTON H. E. 1981: Biology of insect eggs. Volume 2. Pergamon Press, Oxford, pp. 475-778.
HIRIBARNEGARAI F. 2017: Estafilínidos de la colección de la Sociedad de Ciencias Aranzadi (Coleoptera: Staphylinidae). Munibe, Ciencias Naturales 65: 107-124.
HOCHHUTH I. H. 1849: Die Staphylinen-Fauna des Kaukasus und Transkaukasiens. Bulletin de la Société Impériale des Naturalistes de Moscou 22: 18-214.
HOCHHUTH I. H. 1851: Beitraege aur naeheren Kenntniss der Staphylinen Russlands. Enthaltend Beschreibung neuer Genera und Arten, nebst Erläuterungen noch nicht hinlänglich bekannter Staphylinen des russischen Reichs. Bulletin de la Société Impériale des Naturalistes de Moscou 24 (2): 3-58.
HOCHHUTH J. H. 1862: Beitraege zur naeheren Kenntniss der Staphylinen Russlands, II. Bulletin de la Société Impériale des Naturalistes de Moscou 35 (3): 1-113.
HODGE P. J. \& JONES R. A. 1995: New British beetles: Species not in Joy's practical handbook. British Entomological and Natural History Society, Hurst, Reading, United Kingdom, 175 pp.
HOFFMANN H., KLEEBERG A., GÖRN S. \& FISCHER K. 2018: Riverine fen restoration provides secondary habitat for endangered and stenotopic rove beetles (Coleoptera: Staphylinidae). Insect Conservation and Diversity 11: 194-203.
HOLME F. 1837: Notice of the coleopterous insects observed in the Scilly Islands in July and August, 1836. Transactions of the Entomological Society of London 2: 58-64.
HORION A. 1965: Faunistik der Mitteleuropäischen Käfer, Bd. X, Staphylinidae, 2. Teil Paederinae bis Staphylininae. Verlagsdruckerei PH. C. W. Schmidt, Neustadt a. d. Aisch, 335 pp.
HORN G. H. 1878: Synopsis of the Quediini of the United States. Transactions of the American Entomological Society 7: 149-167.
HU F. S., BOGRI A., SOLODOVNIKOV A. \& HANSEN A. K. 2020: Hypogean Quedius of Taiwan and their biogeographic significance (Coleoptera: Staphylinidae: Staphylininae). European Journal of Taxonomy 664: 1-24.
HYMAN P. S. \& PARSON M. S.1994: A review of the scarce and threatened Coleoptera of Great Britain. Part 2. U.K. Nature Conservation No. 12. Joint Nature Conservation Committee, Peterborough, 248 pp.
ICZN 1996: Opinion 1851. Xantholinini Erichson, 1839 and Quediini Kraatz, [1857] (Insecta, Coleoptera): given precedence over some senior synonyms; Quedius Stephens, 1829: Staphylinus levicollis Brullé, 1832 designated as the type species. Bulletin of Zoological Nomenclature 53: 215-217.
ISAKSSON D. 2007: Inventering av träsksammetslöpare i Gävleborgs
län 2006. [Inventory of the swamp velvet ground beetle in Gävleborg County 2006]. Swedish Environmental protection Agency, Länsstyrelsen i Gävleborgs län (in Swedish).
ISRAELSON G. 1990: Further notes on the coleopterous fauna of the Azores, with speculations on its origin. Bocagiana (Funchal) 138: 1-8.
JANÁK J. 1992: Zajímavé nálezy drabčíků v Čechách (Coleoptera, Staphylinidae). [Interesting findings of rove beetles in the Czech Republic (Coleoptera, Staphylinidae)]. Sbornik Severočeského Muzea, Přírodní Vědy 18: 83-102 (in Czech).
JARRIGE J. 1971: Contribution a la faune de l'Iran. 21. Coléoptères Brachelytra. Annales de la Société Entomologique de France (Nouvelle Série) 7: 483-502.
JEANNEL R. \& JARRIGE J. 1949: Biospeologica LXVIII. Coléoptères Staphylinides (Première Série). Archives de Zoologie Expérimentale et Générale 86: 255-392.
JELÍNEK J. 2001: Drabčíci podčeledi Staphylininae (Coleoptera: Staphylinidae), tribu Staphylinini a Quediini Orlických hor a Podorlicka. (The Staphylinid beetles of the subfamily Staphylininae (Coleoptera: Staphylinidae), tribus Staphylinini and Quediini from regions Orlické hory and Podorlicko (Czech Republic)). Acta Musei Reginaehradecensis 28: 189-206 (in Czech, English abstract).
JOHANSEN J. P. 1914: Danmarks rovbiller eller Bille fam. Staphylinidae's danske Slagter og Arter. [Denmark's Rove Beetles or Beetle fam. Staphylinidae's Danish genera and species]. Bianco Lunos Bogtrykkeri, Copenhagen, 660 pp (in Danish).
JONSELL M., LJUNGBERG H. \& HANSSON J. 2011: Inventering av spindlar och skalbaggar i 11 rikkärr i Uppsala län. [Inventory of spiders and beetles in 11 rich fens in Uppsala County]. Swedish Environmental Protection Agency, Länsstyrelsen i Uppsala län (in Swedish).
KATOH K., MISAWA K., KUMA K. I. \& MIYATA T. 2002: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059-3066.
KASULE F. K. 1968: Field studies on the life-histories of some British Staphylinidae (Coleoptera). Transactions of the Society for British Entomology 18: 49-80.
KASULE F. K. 1970: The larvae of Paederinae and Staphylininae (Coleoptera: Staphylinidae) with keys to the known British genera. Transactions of the Royal Entomological Society of London 122: 49-80.
KESDEK M., YILDIRIM E., ANLAŞ S. \& TEZCAN S. 2009: Contribution to the knowledge of Staphylinidae fauna of Turkey (Coleoptera). Munis Entomology and Zoology 4: 392-401.
KHACHIKOV E. A. 1998: Materialy k faune zhukov Nizhnego Dona i Severnogo Kavkaza. Zhuki-stafiliny (Staphylinidae). Chast II. Izdatelstvo. [Materials to the coleopteran fauna of downstreams of Don river and Northern Caucasus]. "Pro I ROIPK", Rostov-on-Don, 49 pp (in Russian).
KHACHIKOV E. A. 2002: Preliminary report on the fauna of beetles staphylinids (Coleoptera, Staphylinidae) of the Rostovsky Reserve. Proceedings of the Rostovsky Reserve 1: 105-106.
KHACHIKOV E. A. 2003: New and little-known staphylinid beetles (Coleoptera: Staphylinidae) in the south of the European part of Russia and the North Caucasus. Proceedings of the Kharkov Entomological Society 10: 44-50.
KIESENWETTER E. A. H. von 1848: [Species]. In: KÜSTER H. Die Käfer Europa's. Nach der Natur beschrieben. Zwölftes Heft. Bauer \& Raspe Verlag, Nürnberg, 100 pp .
KIESENWETTER E. A. H. von 1851: Énumération des coléoptères trouvés dans le midi de la France et en Catalogne. (1re partie). Annales de la Société Entomologique de France, Deuxième Série 9: 385-440.
KIESENWETTER H. vON \& MÄRKEL F. 1847: Eine entomologische Excursion im Riesengebirge im Juli 1846 (Fortsetzung). Entomologische Zeitung (Stettin) 8: 73-87.
KLIMASZEWSKI J. \& BRUNKE A. J. 2018: Canada's adventive rove beetle (Coleoptera, Staphylinidae) fauna: A long-term case study on the detection, origin, introduction pathways, and dynamic distribution of non-native beetles. Pp. 65-79. In: BETZ O., IRMLER U. \& KLIMASZEWSKI J. (eds): Biology of Rove Beetles (Staphylinidae). Springer, Cham, 351 pp.
KLIMASZEWSKI J., SIKES D. S., BRUNKE A. \& BOURDON C. 2019:

Species review of the genus Boreophilia Benick from North America (Coleoptera, Staphylinidae, Aleocharinae, Athetini): systematics, habitat, and distribution. ZooKeys 848: 57-102.
KODANDARAMAIAH U., SIMONSEN T. J., BROMILOW S., WAHLBERG N. \& SPERLING F. A. H. 2013: Deceptive single-locus taxonomy and phylogeography: Wolbachia mediated discordance between morphology, mitochondria and nuclear markers in a butterfly species. Ecology and Evolution 3: 5167-5176.
KOLENATI F. A. 1846: Meletemata Entomologica. Fasc. III. Brachelytra Caucasi cum distributione geographica adnexis Pselaphinis, Scydmaenis, Notoxidibus et Xylophagis. Academia Imperialis Scientiarum, Petropoli, 44 pp .
KOMOSIŃSKI K. 2001: Dwa rzadkie halofilne gatunki Staphylinidae z okolic Gdańska [Two rare halophylic Staphylinidae species from around Gdańsk]. In: NOWOSAD A. \& MAZUR A. (eds) Drugie Sympozjum Staphylinidae. Poznań - Jeziory. Vol. 1 (in Polish).
KORGE H. 1960a: Eine neue deutsche Quedius-Art von der Ostseeküste (Col. Staphylinidae). Mitteilungen der Deutschen Entomologischen Gesellschaft 19: 52-53.
KORGE H. 1960b: Weitere Bemerkungen zur Gruppe des Quedius molochinus Grav. (Col. Staphylinidae). Mitteilungen der Deutschen Entomologischen Gesellschaft 19: 67-69.
KORGE H. 1961: Quedius subunicolor n. sp. aus Nordeuropa (Col. Staphy1.). Mitteilungen der Deutschen Entomologischen Gesellschaft 20: 81-83.
KORGE H. 1962a: Beiträge zur Kenntnis der palaearktischen Staphyliniden (Col.). Reichenbachia 1: 149-154.
KORGE H. 1962b: Beiträge zur Kenntnis der Untergattung Quedius der Gattung Quedius Steph. (Col. Staphylinidae). Deutsche Entomologische Zeitschrift 9: 332-335.
KORGE H. 1963: Das Naturschutzgebiet Teufelsbruch in Berlin-Spandau III. Die Käferfauna. Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin 3: 67-102.
KORGE H. 1964: Carabiden-und Staphylinidenfunde in den Pontischen Gebirgen Kleinasiens und in Mazedonien (Coleoptera). Reichenbachia 14: 105-126.
KORGE H. 1968: Taxonomische Bemerkungen über Staphyliniden. Entomologische Blätter für Biologie und Systematik der Käfer 64: 51-57.
KORGE H. 1971: Beiträge zur Kenntnis der Koleopterenfauna Kleinasiens. Annotationes Zoologicae et Botanicae 67: 1-68.
KORGE H. 1973: Beiträge zur Kenntnis der märkischen Koleopterenfauna (Teil XXXI). Mitteilungen der Deutschen Entomologischen Gesellschaft 32: 49-61.
KRAATZ G. 1857: Naturgeschichte der Insekten Deutschlands, Abteilung 1, Coleoptera, vol. 2, Staphylinii. Lief. 3-6. Nicolaische Buchhandlung, Berlin, pp. 377-1080.
KRAATZ G. 1858: Beitrag zur Käferfauna Griechenlands. Zweites Stück: Palpicornia, Silphales, Scydmaenidae, Pselaphidae, Staphylinidae. Berliner Entomologische Zeitschrift 2: 37-67.
KRAATZ G. 1867: Synonymische Bemerkungen. Berliner Entomologische Zeitschrift 10: 413-418.
KRÁSA T. 1904: Fauna bohemica. Noví brouci pro českou faunu. A. Příspěvek. [Bohemian fauna. New beetles for the Czech fauna. A. Contribution]. Časopis České Společnosti Entomologické 1: 81-83 (in Czech).
KÜSTER H. 1848: Die Käfer Europa's. Nach der Natur beschrieben. Zwölftes Heft. Bauer \& Raspe Verlag, Nürnberg, 208 pp +2 pls.
LABATUT S. 2016: Contribution à la connaissance des Insectes des Dunes des Seulières à Saint-Denis-d'Oléron (Charente-Maritime). Bulletin de la Société Linnéenne de Bordeaux 151: 13-21.
LACORDAIRE J. T. 1835: Coléoptères. Pp. 133-677. In: BOISDUVAL J. B. A. D. DE \& LACORDAIRE J. T. Faune entomologique des environs de Paris; ou species général des insectes qui se trouvent dans un rayon de quinze à vingt lieux aux alentours de Paris. Tome premier. Méquignon-Marvis, Paris. [2] $+17+696$ pp. [numbered i-cii, 103-696] + 3 pls.
LANFEAR R., FRANDSEN P. B., WRIGHT A. M., SENFELD T. \& CALCOTT B. 2017: PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772-773.
LAPORTE J. F. DE 1840: Histoire naturelle des insectes coléoptères;
avec une introduction renfermant l'anatomie et la physiologie des animaux articulés, par M. Brullé; ouvrage accompagné de 155 planches gravées sur acier représentant plus de 800 sujets. Tome deuxième. P. Duménil, Paris, 564 pp.
LAST H. 1952: Taxonomic notes on Quedius molochinus Grav. and Q. pallipes Lucas (Col., Staphylinidae). Entomologist's Monthly Magazine 88: 148-150.
LAST H. R. 1963: Notes on Quedius molochinus Gravenhorst (Col., Staphylinidae) with the addition of two species new to the British list. Entomologist's Monthly Magazine 99: 43-45.
LÁSZLÓ Á. 1998: A Mátra Múzeum bogárgyûjteménye, Staphylinidae (Coleoptera) [Beetle Collection of the Matra Museum, Staphylinidae (Coleoptera)]. Folia Historico Naturalia Musei Matraensis 22: 121-144. (in Hungarian)
LATREILLE P. A. 1804: Histoire naturelle, générale et particulière, des crustacés et des insectes. Ouvrage faisant suite à l'histoire naturelle générale et particulière, composée par Leclerc de Buffon, et rédigée par C.S. Sonnini, membre de plusieurs sociétés savantes. Tome Neuvième. F. Dufart, Paris, 416 pp.
LEIGH J. W. \& BRYANT D. 2015: POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110-1116.
LINDROTH C. H. 1968: Distribution and distributional centers of North Atlantic insects. Bulletin of the Entomological Society of America 14: 91-95.
LOHSE G. A. 1964: Band 4. Staphylinidae 1 (Micropeplinae bis Tachyporinae). In: FREUDE H., HARDE K. W. \& LOHSE G. A. (eds): Die Käfer Mitteleuropas. Goecke \& Evers, Krefeld, 264 pp.
LOHSE G. A. \& LUCHT W. H. (eds) 1989: Die Käfer Mitteleuropas. 1. Supplementband mit Katalogteil. Goecke \& Evers, Krefeld, 346 pp.
LOTT D. A. \& ANDERSON R. 2011: The Staphylinidae (rove beetles) of Britain and Ireland. Parts 7 \& 8: Oxyporinae, Steninae, Euaesthetinae, Pseudopsinae, Paederinae, Staphylininae. Handbooks for the Identification of British Insects 12 (7): 1-340.
LUCAS P. H. 1846-1849: Histoire naturelle des animaux articulés. Deuxième partie. Insectes. In: Exploration scientifique de l'Algérie pendant les années 1840, 1841, 1842 publiée par ordre du Gouvernement et avec le concours d'une Commission Académique. Sciences physiques. Zoologie II. A. Bertrand, Paris, 590 pp.
LUCHT W. H. 1987: Die Käfer Mitteleuropas: Katalog. Goecke \& Evers, Krefeld, 342 pp.
LUKHTANOV V. A. 2019: Species delimitation and analysis of cryptic species diversity in the XXI century. Entomological Review 99: 463-472.
LUMLEY L. M. \& SPERLING F. A. 2010: Integrating morphology and mitochondrial DNA for species delimitation within the spruce budworm (Choristoneura fumiferana) cryptic species complex (Lepidoptera: Tortricidae). Systematic Entomology 35: 416-428.
LUMLEY L. M. \& SPERLING F. A. 2011: Utility of microsatellites and mitochondrial DNA for species delimitation in the spruce budworm (Choristoneura fumiferana) species complex (Lepidoptera: Tortricidae). Molecular Phylogenetics and Evolution 58: 232-243.
LUPI D., COLOMBO M. \& ZANETTI A. 2006: The rove beetles (Coleoptera Staphilinidae) of three horticultural farms in Lombardy (Northern Italy). Bollettino di Zoologia Agraria e di Bachicoltura 38: 143-165.
MAGURA T., NAGY D. \& TÓTHMÉRÉSZ B. 2013: Rove beetles respond heterogeneously to urbanization. Journal of Insect Conservation 17: 715-724.
MAJKA C. G. 2007: Quedius molochinus (Coleoptera: Staphylinidae) newly recorded in the maritime provinces of Canada. Proceedings of the Entomological Society of Washington 109: 958-959.
MAJKA C. G. \& KLIMASZEWSKI J. 2008: Introduced Staphylinidae (Coleoptera) in the Maritime provinces of Canada. Canadian Entomologist 140: 48-72.
MAJKAC. G. \& SMETANAA. 2007: New records of introduced species of Quedius Stephens, 1829 (Coleoptera: Staphylinidae) from the Maritime Provinces of Canada. Proceedings of the Entomological Society of Washington 109: 427-434.
MAJZLAN O. \& BOHÁČ J. 2012: Faunistické príspevky zo Slovenska (Coleoptera: Staphylinidae). [Faunistic contributions from Slovakia
(Coleoptera: Staphylinidae)]. Naturae Tutela 16: 179-185 (in Slovak). MAJZLAN O. \& LITAVSKÝ J. 2017: Topická viazanost' chrobákov (Coleoptera) na pôdne strátum lužných lesov v okolí riek Tisa a Begej (Srbská republika). [Topic relations of the beetles (Coleoptera) to soil stratum in floodplain forests around the rivers Tisza and Begej (Republic of Serbia)]. Entomofauna Carpathica 29: 13-26 (in Slovak).
MANNERHEIM C. G. 1830: Précis d'un nouvel arrangement de la famille des brachélytres, de l'ordre des insectes coléoptères. St. Petersbourg, 87 pp .
MANNERHEIM C. G. 1831: Précis d'un nouvel arrangement de la famille des brachélytres de l'ordre des insectes coléoptères. Mémoires présentés à l'Académie Impériale de Sciences de St.-Pétersbourg par Divers Savans 1: 415-501.
MANNERHEIM C. G. 1843: Beitrag zur Kaefer-Fauna der Aleutischen Inseln, der Insel Sitkha und Neu-Californiens. Bulletin de la Société Impériale des Naturalistes de Moscou 16: 175-314.
MAŘAN J. 1935: Nové a zajímavé formy rodu Quedius Steph. z ostrova Kréty. De novis et raris formis generis Quedius Steph. ex insula Creta. Časopis Československé Společnosti Entomologické 32: 8-9 (in Czech).
MARCHAL P. \& CHARDONNET G. 2000: Sortie entomologique en Corse (mai 1998), list des insectes récoltés le note, coléoptères. Bulletin Mensuel de la Sociétét Linnéenne de Lyon 69: 65-80.
MARSHAM T. 1802: Coleoptera Britannica, sistens insecta Britanniae indigena, secundum methodum Linnaeanam disposita. Vol. 1, Coleoptera. Wilks \& Taylor, Londini, 547 pp .
MASTERS B. C., FAN V. \& ROSS H. A. 2011: Species delimitation-a geneious plugin for the exploration of species boundaries. Molecular Ecology Resources 11: 154-157.
MATELESHKO A. 2007: Faunistic records of the Staphylinidae (Coleoptera) from Transcarpathia. Scientific Herald of Uzhgorod University, Series Biology 21: 182-186.
MAZUR A., TKOCZ D. \& URBAN M. 2007: Rove beetles (Coleoptera, Staphylinidae) as an element of monitoring of forest ecosystems in the Karkonosze National Park. Part I. The autumn season aspect. Acta Scientiarum Polonorum. Silvarum Colendarum Ratio et Industria Lignaria 6: 21-44.
MÉNÉTRIÉS E. 1832: Catalogue raisonné des objets de zoologie recueillis dans un voyage au Caucase et jusqu'aux frontières actuelles de la Perse entrepris par ordre de S. M. L'Empereur. L'Académie Impériale des Sciences, St. Petersbourg, $271+$ xxxii + iv pp.
MÉQUIGNON A. 1937: Sur Quedius molochinus Grav. Miscellanea Entomologica 38 (3): 1-3.
MITTERBOECK T. F. \& ADAMOWICZ S. J. 2013: Flight loss linked to faster molecular evolution in insects. Proceedings of the Royal Society of London Series B-Biological Sciences 280 (20131128): 1-8.
MONSEVIČIUS V. 2013. New and little known for the Lithuanian fauna species of beetles (Coleoptera), found in 2002, 2011-2012. New and Rare for Lithuania Insect Species 25: 24-30.
MORAVEC P. \& VONIČKA P. 2000: Výsledky průzkumu střevlíkovitých (Coleoptera: Carabidae) v areálu skládky toxických odpadů v Chabařovicích, severozápadní Čechy. (Results of the ground beetles (Coleoptera: Carabidae) community research in area of waste dump for toxical waste in Chabařovice. Northwestern Bohemia). Sbornik Okresniho Muzea v Mostě 22: 41-50 (in Czech).
MOTSCHULSKY V. 1858: Énumération des nouvelles espèces de coléoptères rapportés de ses voyages. 2-d. Article (continuation). Bulletin de la Société Impériale des Naturalistes de Moscou 31: 634-670.
MULSANT E. \& REY C. 1876: Tribu des brévipennes. Annales de la Société d'Agriculture Histoire Naturelle et Arts Utiles de Lyon, Quatrième Série 8: 145-856.
MUNSTER T. 1923: Quediini (Coleoptera). De norske arter. [The Norwegian species]. Norsk Entomologisk Tidsskrift 1: 183-204 (in Norwegian).
NASH D. R. 2009: Notes on the Suffolk List of Coleoptera: 14. Fifteen further species new to the list with one deletion and some interesting recent records. Transcripts of the Suffolk Natural History Society 45: 24.
NEWTON A. F. 1995: Case 2872. Xantholinini Erichson, 1839 and Quediini Kraatz, 1857 (Insecta, Coleoptera): proposed precedence over senior synonyms, and Quedius Stephens, 1829: proposed designation
of Staphylinus levicollis Brullé, 1832 as the type species. Bulletin of Zoological Nomenclature 52: 48-53.
NEWTON A. F. 2020: StaphBase: Staphyliniformia world catalog database (version Nov 2018). In: ROSKOV Y., OWER G., ORRELL T., NICOLSON D., BAILLY N., KIRK P. M., BOURGOIN T., DEWALT R. E., DECOCK W., NIEUKERKEN E. van \& PENEV L. (eds): Species 2000 \& ITIS Catalogue of Life. 2020-06-04 Beta Digital resource. Naturalis, Leiden. www.catalogueoflife.org/col.
NGUYEN L.-T., SCHMIDT H. A., HAESELER A. von \& MINH B. Q. 2015: IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32: 268-274.
NORDMANN A. 1837: Symbolae ad monographiam staphylinorum. Academiae Caesareae Scientiarun, Petropoli, 167 pp +2 pls.
NOWOSAD A. 1990: Staphylinidae (Coleoptera) gniazd kreta-Talpa europea L. w Polsce. [Staphylinidae (Coleoptera) of nests of the mole--Talpa europea L. in Poland]. Seria Zoologiczna 15: 1-254 (in Polish).
OSELLA G. \& ZANETTI A. 1975: La coleopterofauna dei nidi di Talpa europaea L. nell'Italia settentrionale a nord del fiume Po. Bollettino di Zoologia Agraria e di Bachicoltura, Serie 212: 41-200.
OUTERELO R. 1978: Descripcion de la pupa de Quedius (s. str.) curtipennis BERNH. (Col. Staphylinidae). Nouvelle Revue d'Entomologie 8: 281-283.
OUTERELO R., GAMARRA P. \& SALGADO J. M. 1998: Los Staphylinidae (Coleoptera) cavernícolas del noroeste de la Península Ibérica (I). Mémoires de Biospéologie 25: 111-137.

OUTERELO R., PALMER M. \& PONS G. X. 1995: Staphylinidae y Pselaphidae (Coleoptera, Staphylinoidea) de s'Albufera de Mallorca (Islas Baleares). Bolletí de la Societat d'Història Natural de les Balears 38: 75-88.
OWEN J. A. 1997: Beetles (Coleoptera) recorded from various Irish sites in 1993, 1994 and 1996. Bulletin Irish Biogeographical Society 20: 136-154.
OWEN J. A. 2000: Coleoptera occurring underground at the roots of old trees. Entomologist's Gazette 51: 239-256.
ÖZGEN İ. 2011: New records of Staphylinidae (Coleoptera) from Bulgaria, Iran and Turkey. Acta Zoologica Bulgarica 63: 203-204.
ÖZGEN İ., KHACHIKOV E. A. \& ÖRGEL S. 2016: Some additional notes on the genus Quedius Stephens, 1829 (Coleoptera: Staphylinidae: Staphylininae) fauna of Turkey. Munis Entomology and Zoology 1: 619-621.
PALM T. 1962: Bidrag till kännedomen om svenska skalbaggars biologi och systematik. 42-47. [Contribution to knowledge of Swedish beetles' biology and systematics. 42-47]. Entomologisk Tidskrift 83: 185-198 (in Swedish).
PALM T. 1963a: Skalbaggar. Coleoptera. Kortvingar: Fam. Staphylinidae. Underfam. Paederinae, Staphylininae. [Beetles. Coleoptera. Rove beetles. Fam. Staphylinidae. Subfam. Paederinae, Staphylininae]. Svensk Insektfauna 9: 1-168 (in Swedish).
PALM T. 1963b: Bidrag till kännedomen om svenska skalbaggars biologi och systematik 48-50. [Contribution to the knowledge of Swedish beetles' biology and systematics 48-50]. Entomologisk Tidskrift 84: 113-118 (in Swedish).
PAULIAN R. 1941: Les premiers états des Staphylinoidea (Coleoptera). Étude de morphologie comparée. Mémoires du Muséum National d'Histoire Naturelle 15: 1-361.
PAWŁOWSKI J. S. \& SZUJECKI A. 1966: Nowe dla Babiej Góry gatunki chrząszczy. [New beetles from Babia Góra] (Coleoptera) II. Staphylinidae. Fragmenta Faunistica 12: 373-384 (in Polish).

PAYKULL G. 1800: Fauna Svecica. Insecta. Tomus III. Joh. F. Edman, Upsaliae, 459 pp.
PEYRON E. 1858: Catalogue des Coléoptères des environs de Tarsous (Caramanie), avec la description des espèces nouvelles. Annales de la Société Entomologique de France, Troisième Série 6: 353-434.
POHL G. R., LANGOR D. W. \& SPENCE J. R. 2007. Rove beetles and ground beetles (Coleoptera: Staphylinidae, Carabidae) as indicators of harvest and regeneration practices in western Canadian foothills forests. Biological Conservation 137: 294-307.
POPE R. D. 1977: Coleoptera and Strepsiptera. In: KLOET, G. S. \& HINCKS W. D. (eds): A Check List of British Insects (Second Edition). Handbooks for the Identification of British Insects, Vol. 11,

Part 3. Royal Entomological Society of London, London, 105 pp. POPPIUS B. 1905: Contributions to the knowledge of the Coleopterous fauna of the Shetland- and Orkney-Islands. Öfversigt af Finska Vetenskaps-Societetens Förhandlingar 47 (17): 1-19.
PORTAA. 1907: Revisione degli stafilinidi italiani. IIIa parte. Quediini. Rivista Coleotterologica Italiana 5: 85-116, 125-153.
PORTEVIN G. 1929: Histoire naturelle des coléoptères de France. Vol. 1. Adephaga, Polyphaga: Staphylinoidea. P. Lechevalier \& Fils, Paris, 649 pp .
POTOTSKAYA V. A. 1967: Opredelitel' lichinok korotkonadkrylykh zhukov Evropejskoy chasti SSSR. [Key of the larvae of Staphylinidae in the European part of the USSR]. Nauka, Moscow, 120 pp (in Russian).
PUTCHKOV A. V., BRYGADYRENKO V. V., FALY L. I. \& KOMAROMI N. A. 2020: Staphylinids (Coleoptera, Staphylinidae) of Ukrainian metropolises. Biosystems Diversity 28: 41-47.
RAMBAUT A., DRUMMOND A. J., XIE D., BAELE G. \& SUCHARD M. A. 2018: Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901-904.
RATNASINGHAM S. \& HEBERT P. D. N. 2013: A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8 (7) (e66213): 1-16.
REDTENBACHER L. 1849: Fauna Austriaca. Die Käfer. Nach der analytischen Methode bearbeitet. Carl Gerold, Wien, 883 pp.
REDTENBACHER L. 1857: Fauna Austriaca: Die Käfer. Nach der analytischen Methode bearbeitet (Edition 2). C. Gerold's Sohn, Wien, 1017 pp.
REDTENBACHER L. 1874: Fauna Austriaca: Die Käfer. Nach der analytischen Methode bearbeitet. Dritte, gänzlich umgearbeitete und bedeutend vermehrte Auflage. Vol. 1. C. Gerold's Sohn, Wien, 564 pp.
REITTER E. 1909: Fauna Germanica. Die Käfer des Deutschen Reiches. Nach der analytischen Methode bearbeitet. II. Band. K. G. Lutz, Stuttgart, 392 pp.
RONQUIST F., TESLENKO M., VAN DER MARK P., AYRES D. L., DARLING A., HÖHNA S., LARGET B., LIU L., SUCHARD M. A. \& HUELSENBECK J. P. 2012: MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61: 539-542.
ROSENHAUER W. G. 1856: Die Thiere Andalusiens nach den Resultaten einer Reise zusammengestellt, nebst den Beschreibungen von 249 neuen oder bis jetzt noch unbeschriebenen Gattungen und Arten. T. Blaesing, Erlangen, 429 pp.
ROUBAL J. 1931: Formální oprava názvu druhého popisu článku "Popisy nových evropských Coleopter. Coleoptera nova ex Europa descripta" v Čas. Čsl. Sp. Ent. (A. S. E. Csl.) XXVII. (1930) P. 75. Corrigé. [Formal correction of the title of the second description of the article "Descriptions of new European Coleopters. Coleoptera nova ex Europa descripta" in Cas. Csl. Sp. Ent. (A. S. E. Csl.) XXVII. (1930) P. 75. Correction]. Časopis Československé Společnosti Entomologické 28: 1 (in Czech).
ROUBAL J. 1949: Popisy nových forem Coleopter z ČSR. Coleopteorum [sic!] formae novae de RČS descriptae. [Descriptions of new forms of Coleoptera from Czechoslovakia]. Časopis Československé Společnosti Entomologické 46: 44-46 (in Czech).
RUNDE G. H. 1835: Brachelytrorum species Agri Halensis. Ploetzianis, Halae, 32 pp.
RUTA R., ORZECHOWSKI R., ALEKSANDROWICZ O., BOROWSKI J., BUCHHOLZ L., KOMOSIŃSKI K., LUBECKI K. \& PRZEWOŹNY M. 2016: Chrząszcze (Insecta: Coleoptera) Gryżyńskiego Parku Krajobrazowego. [Beetles (Insecta: Coleoptera) of the Gryżyński Landscape Park]. Przegląd Przyrodniczy 2: 28-62 (in Polish).
SAHLBERG C. R. 1830: Insecta Fennica, dissertationibus academicis, A. 1817-1834 editis, Pars I: A. Franckeliana, Helsingforsiae, pp. 281-360.
SAHLBERG J. 1876: Enumeratio Coleopterorum brachelytrorum Fenniae. Systematisk förteckning öfver de inom Finlands naturalhistoriska område hittills funna Coleoptera Brachelytra jemte uppgift om arternas utbredning och beskrifningar af nya och mindre kända species. [A Catalogue of the Coleoptera of Finland. Systematic list of the Coleoptera Brachelytra found in Finland's natural history area so far, as well as information on the species' distribution and descriptions of
new and lesser known species.]. Acta Societatis pro Fauna et Flora Fennica 1 (3): 1-248.
SAINTE-CLAIRE DEVILLE J. 1906: Catalogue critique des coléoptères de la Corse. Revue d'Entomologie 25: 1-80.
SALNITSKA M. \& SOLODOVNIKOV A. 2018a: Revision of the Quedius fauna of Middle Asia (Coleoptera, Staphylinidae, Staphylininae). Deutsche Entomologische Zeitschrift 65: 117-159.
SALNITSKA M. \& SOLODOVNIKOV A. 2018b: Taxonomy of the poorly known Quedius mutilatus group of wingless montane species from Middle Asia (Coleoptera: Staphylinidae: Staphylinini). European Journal of Taxonomy 401: 1-17.
SALNITSKA M. \& SOLODOVNIKOV A. 2019: Rove beetles of the genus Quedius (Coleoptera, Staphylinidae) of Russia: a key to species and annotated catalogue. ZooKeys 847: 1-100.
SALNITSKA M. \& SOLODOVNIKOV A. 2021: DNA barcode sheds light on species boundaries in the common morphologically variable rove beetle Quedius umbrinus-complex that puzzled taxonomists for more than a century (Coleoptera, Staphylinidae). Systematics and Biodiversity 19: 859-874.
SANMARTÍN I., ENGHOFF H. \& RONQUIST F. 2001: Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biological Journal of the Linnean Society 73: 345-390.
SAWADA K. 1965: New species of Staphylinidae, mainly from Mt. Jônen, the Japan Alps. Entomological Review of Japan 18: 11-18.
SCHÄR S., TALAVERA G., ESPADALER X., RANA J. D., ANDERSEN ANDERSEN A., COVER S. P. \& VILA R. 2018: Do Holarctic ant species exist? Trans-Beringian dispersal and homoplasy in the Formicidae. Journal of Biogeography 45: 1917-1928.
SCHATZ I. 2008: Kurzflügelkäfer (Coleoptera: Staphylinidae) im Naturpark Schlern-Rosengarten: (Südtirol, Italien). Gredleriana 8: 377-410.
SCHEERPELTZ O. 1933: Pars 129. Staphylinidae VII: Supplementum I. In: SCHENKLING S. (ed.): Coleopterorum Catalogus, W. Junk, Berlin, pp. 989-1500.
SCHEERPELTZ O. 1956: Die von Herrn Dr. E. Haaf vom Museum Frey-Tutzing gelegentlich seiner Studienreise 1955 in Griechenland und auf der Insel Cypern aufgesammelten Staphylinidae (Col.) (73. Beitrag zur Kenntnis der paläarktischen Staphyliniden). Entomologische Arbeiten aus dem Museum G. Frey 7: 1092-1117.
SCHEERPELTZ O. 1961: Wissenschaftliche Ergebnisse der zoologischen Explorationen des Gebietes von Aspromonte im südlichsten Calabrien in den Jahren 1957/58 durch Prof. Dr. S. Ruffo und Dr. M. Magistretti. Col. Staphylinidae (110. Beitrag). Memorie del Museo Civico di Storia Naturale di Verona 9: 115-154.
SCHEERPELTZ O. 1965a: Wissenschaftliche Ergebnisse der von Dr. S. Ruffo und Dr. M. Magistretti nach Sizilien unternommenen, zoologischen Studienreisen (Col. Staphylinidae). I. Teil. Die in den nördlichen Gebirgen Siziliens + Staphyliniden-Gattung und -Arten (130. Beitrag ...). Memorie del Museo Civico di Storia Naturale di Verona 12: 391-414.
SCHEERPELTZ O. 1965b: Die im westlichen, zentralen und südlichen Sizilien und in dem "Monti Iblei" aufgefundenen Staphyliniden--Gattung und Arten (131. Beitrag zur Kenntnis der paläarktischen Staphyliniden). Bollettino delle Sedute dell'Accademia Gioenia di Scienze in Catania, Serie 4 8: 496-517.
SEGERS R. 1987: A case of triophthalmy and other teratological aberrations in Staphylinidae (Coleoptera). Bulletin et Annales de la Société Royale Belge d'Entomologie 123: 179-184.
SEIDLITZ G. 1875: Fauna Baltica. Die Käfer (Coleoptera) der Ostseeprovinzen Russlands. H. Laakmann, Dorpat, 560 pp.
SEMENOV V. B., EGOROV L. V. \& VINOGRADOVA E. Y. 2015: The staphylinid beetles annotated checklist of the Chuvash Republic. Novoe Vremya, Cheboksary, 146 pp.
SEMIONENKOV O. I., SEMENOV V. B. \& GILDENKOV M. Y. 2015: Rove beetles (Coleoptera: Staphylinidae) of the West of the European part of Russia (excepting subfamilies Pselaphinae, Scydmaeninae and Scaphidiinae). Universum, Smolensk, 392 pp.
SHARP D. 1911: A new British Quedius. Entomologist's Monthly Magazine 47: 57.
SHILOV V. F. 1975: Rove beetles of the subfamily Staphylininae (Coleoptera, Staphylinidae) in the Komi ASSR. Entomological Review

54: 97-99.
SHORTHOUSE D. P. 2010: SimpleMappr, an online tool to produce publication-quality point maps. Available from: https://www.simplemappr.net. (accessed May 27, 2020).
SILVA P. M. DA, AGUIAR C. A., NIEMELÄ J., SOUSA J. P. \& SERRANO A. R. 2009: Cork-oak woodlands as key-habitats for biodiversity conservation in Mediterranean landscapes: a case study using rove and ground beetles (Coleoptera: Staphylinidae, Carabidae). Biodiversity and Conservation 18: 605-619.
SILVA P. M. DA, SILVA I. D. F., BOIEIRO M., AGUIAR C. A. \& SERRANO A. R. 2006: Four new records to the rove-beetle fauna of Portugal (Coleoptera, Staphylinidae). Boletín de la Sociedad Entomológica Aragonesa 1: 397-399.
SIMONSEN T. J., MOORE M. D., DUPONT S. T. \& STEVENS M. I. 2019: Testing DNA barcodes against morphology for the "tripectinate Abantiades" (Lepidoptera: Hepialidae) reveals a complex relationship between COI sequence data and morphology. Austral Entomology 58: 792-799.
SMETANAA. 1955: Systematische und faunistische Beiträge zur Kenntnis der Staphyliniden-Fauna der Tschechoslovakei (Col.). Ročenka Československé Společnosti Entomologické 51: 135-148 (in Czech, Russian and German summaries, German keys).
SMETANAA. 1958: Fauna ČSR. Svazek 12. Drabčikovití-Staphylinidae I. Staphylinae (Coleoptera). [Fauna of the ČSR. Volume 12. Rove beetles -- Staphylinidae I. Staphylinae (Coleoptera)]. Československá akademie věd, Praha, 435 pp (in Czech).
SMETANA A. 1960a: Systematische und faunistische Beiträge zur Kenntnis der Staphylinidenfauna der Tschechoslowakei IV. (Col., Staphylinidae). Časopis Československé Společnosti Entomologické 57: 258-266 (in Czech, German summary and key).
SMETANAA. 1960b: Bestimmungstabelle der mitteleuropäischen Arten der Gattung Quedius Steph. (Col., Staphylinidae). 1.Teil. Entomologische Blätter für Biologie und Systematik der Käfer 58: 149-160.
SMETANAA. 1962a: Bestimmungstabelle der mitteleuropäischen Arten der Gattung Quedius Steph. (Col., Staphylinidae). 2.Teil. Entomologische Blätter für Biologie und Systematik der Käfer 58: 133-155.
SMETANA A. 1962b: Beschreibung der Larven von Philonthus carbonarius Gyll., Quedius molochinus Grav. und Quedius alpestris Heer (Col., Staphylinidae). Časopis Československé Společnosti Entomologické 59: 131-141.
SMETANA A. 1963: Staphylinidae I (Unterfamilien Oxytelinae bis Tachyporinae). In: LINDBERG H. A contribution to the study of beetles in the Madeira Islands. Results of the expeditions in 1957 and 1959. IV. Commentationes Biologicae, Societas Scientiarum Fennica 25: 30-43.
SMETANAA. 1964: Systematische und faunistische Beiträge zur Kenntnis der Staphyliniden-Fauna der Tschechoslowakei VI (Col., Staphyl.) (51. Beitrag zur Kenntnis der Staphyliniden). Časopis Československé Společnosti Entomologické 61: 162-172.
SMETANA A. 1965a: Staphylinini und Quediini (Col., Staphylinidae) von Newfoundland, Südost-Labrador und Nova Scotia. Acta Entomologica Fennica 20: 1-60.
SMETANAA. 1965b: Staphylinini und Quediini von Canada and Alaska (Coleoptera, Staphylinidae). Acta Universitatis Lundensis 13: 1-18.
SMETANA A. 1966: Systematische und faunistische Beiträge zur Kenntnis der Staphylinidenfauna der Tschechoslowakei VII. (Col., Staphylinidae) (73. Beitrag zur Kenntnis der Staphyliniden). Acta Entomologica Bohemoslovaca 63: 322-336.
SMETANA A. 1967: Wissenschaftliches Ergebnis der zoologischen Expedition des Nationalmuseums in Prag nach der Türkei. Coleop-tera-Staphylinidae, Subfam. Staphylininae. Acta Entomologica Musei Nationalis Pragae 37: 551-564.
SMETANA A. 1970: Staphylinidae (Coleoptera) from the Azores and Madeira. (86th contribution to the knowledge of Staphylinidae). Boletim do Museu Municipal do Funchal 25: 53-67.
SMETANAA. 1971a: Revision of the tribe Quediini of America north of Mexico (Coleoptera: Staphylinidae). Memoirs of the Entomological Society of Canada 79: 1-303.
SMETANA A. 1971b: Revision of the tribe Quediini of America north of Mexico (Coleoptera: Staphylinidae). Supplementum. Canadian Entomologist 103: 1833-1848.

SMETANA A. 1973: Revision of the tribe Quediini of America north of Mexico (Coleoptera: Staphylinidae). Supplementum 2. Canadian Entomologist 105: 1421-1434.
SMETANA A. 1976a: Revision of the tribe Quediini of America north of Mexico (Coleoptera: Staphylinidae). Supplementum 3. Canadian Entomologist 108: 169-184.
SMETANA A. 1976b: New species and remarks on Siberian Quedius (Coleoptera: Staphylinidae). Notulae Entomologicae 56: 21-28.
SMETANA A. 1978a: Revision of the tribe Quediini of America north of Mexico (Coleoptera: Staphylinidae). Supplementum 4. Canadian Entomologist 110: 815-840.
SMETANAA. 1978b: Staphylinini and Quediini from Israel (Coleoptera, Staphylinidae). Revue Suisse de Zoologie 85: 115-126.
SMETANA A. 1978c: Remarks on some Siberian Quedius (Coleoptera, Staphylinidae). Entomologische Blätter für Biologie und Systematik der Käfer 74: 84-88.
SMETANA A. 1981: Revision of the tribe Quediini of America north of Mexico (Coleoptera: Staphylinidae). Supplementum 5. Canadian Entomologist 113: 631-644.
SMETANAA. 1990: Revision of the tribe Quediini of America north of Mexico (Coleoptera: Staphylinidae). Supplementum 6. Coleopterists Bulletin 44: 95-104.
SMETANA A. 1993: Staphylininae. Pp. 47-50. In: JELÍNEK J. (ed.): Check-list of Czechoslovak Insects IV (Coleoptera). Seznam československých brouků. Folia Heyrovskyana, Supplementum 1: 1-172.
SMETANAA. 1995: Rove beetles of the subtribe Philonthina of America north of Mexico (Coleoptera: Staphylinidae). Classification, phylogeny and taxonomic revision. Memoirs on Entomology, International 3: 1-946.
SMETANA A. 1999: Two new names in the genus Quedius Stephens (Coleoptera: Staphylinidae, Staphylinini, Quediina). Coleopterists Bulletin 53: 79.
SMETANAA. 2003: Quedius (Quedius) sundukovi (Coleoptera, Staphylinidae, Staphylinini, Quediina), an interesting new species from the Russian Far East. Elytra 31: 189-193.
SMETANA A. 2017: Quediine subtribes of Staphylinini (Coleoptera, Staphylinidae, Staphylininae) of mainland China. J. Farkač, Praha, 434 pp.
SMETANA A. \& SHAVRIN A. V. 2018: Contribution to the knowledge of the genus Quedius Stephens, 1829 of Siberia and Russian Far East (Coleoptera: Staphylinidae: Staphylinini: Quediina). Linzer Biologische Beiträge 50: 825-836.
SOLODOVNIKOV A. 2006: Revision and phylogenetic assessment of Afroquedius gen. nov. from South Africa: toward new concepts of the genus Quedius, subtribe Quediina and reclassification of the tribe Staphylinini (Coleoptera: Staphylinidae: Staphylininae). Annals of the Entomological Society of America 99: 1064-1084.
SOLODOVNIKOV A. 2011: Subtribus Quediina Kraatz, 1857. Pp. 451-484. In: ASSING V. \& SCHÜLKE M. (eds): Die Käfer Mitteleuropas. Band 4. Staphylinidae (exklusive Aleocharinae, Pselaphinae und Scydmaeninae). 2. Auflage. Spektrum Akademischer Verlag, Heidelberg, 560 pp .
SOLODOVNIKOV A. 2012: Rove beetle subtribes Quediina, Amblyopinina and Tanygnathinina: systematic changes affecting Central European fauna (Coleoptera, Staphylinidae, Staphylinini). ZooKeys 162: 25-42.
SWANSON D. K. 2003. A comparison of taiga flora in north-eastern Russia and Alaska/Yukon. Journal of Biogeography 30: 1109-1121.
STAN M. 2009: Rove beetles (Coleoptera: Staphylinidae) from Mehedinţi Plateau Geological Park (Mehedinți County, Romania). Travaux du Muséum National d'Histoire Naturelle "Grigore Antipa" 52: 233-247.
STANIEC B. 1996: Morphology of the pupa of Quedius plagiatus Mannerheim (Coleoptera: Staphylinidae). Polskie Pismo Entomologiczne 65: 113-118.
STANIEC B. 2010: Materiały do poznania kusakowatych (Coleoptera: Staphylinidae) Poleskiego Parku Narodowego. Część I. Staphylinini. (Contribution to the knowledge of the rove-beetles (Coleoptera: Staphylinidae) of the Polesie National Park. Part I - Staphylinini). Wiadomości Entomologiczne 29: 15-23 (in Polish, English abstract).
STEPHENS J. F. 1829: The nomenclature of British insects: being a
compendious list of such species as are contained in the systematic catalogue of British insects and forming a guide to their classification. Baldwin and Cradock, London, 68 pp.
STEPHENS J. F. 1832: Illustrations of British entomology; or a synopsis of indigenous insects; containing their generic and specific distinctions; with an account of their metamorphoses, times of appearance, localities, food, and economy, as far as practicable. Mandibulata, Vol. 5. Baldwin \& Cradock, London, 240 pp.
STEPHENS J. F. 1833: The nomenclature of British insects; together with their synonymies: being a compendious list of such species as are contained in the Systematic Catalogue of British Insects, and of those discovered subsequently to its publication; forming a guide to their classification. Baldwin and Cradock, London, $4+134 \mathrm{pp}$.
STEPHENS J. F. 1839: A manual of British Coleoptera, or beetles; containing a brief description of all the species of beetles hitherto ascertained to inhabit Great Britain and Ireland. Longman et al., London, $12+443 \mathrm{pp}$.
SZUJECKIA. 1966: Zależność między wilgotnością wierzchniej warstwy gleb leśnych a rozmieszczeniem kusakowatych (Staphylinidae, Col.) na przykładzie nadleśnictwa Szeroki Bór w Puszczy Piskiej. [The dependence between the humidity of the top layer of forest soils and the distribution of rove beetles (Staphylinidae, Col.) on the example of the forest inspectorate Szeroki Bór in the Piska Forest]. Folia Forestalia Polonica 12: 5-156 (in Polish).
SZUJECKI A. 1968: Wstęp do znajomości kusakowatych (Staphylinidae, Col.) Niziny Mazowieckiej na podstawie zbioru W. Mączyńskiego. [Introduction to the knowledge of Rove Beetles (Staphylinidae, Col.) of the Mazovian Lowland based on W. Mączyński's collection]. Polskie Pismo Entomologiczne 38: 693-752 (in Polish).
THOMSON C. G. 1859: Skandinaviens Coleoptera, synoptiskt bearbetade. I. Berlingska Boktryckeriet, Lund, 290 pp.
THOMSON C. G. 1860: Skandinaviens Coleoptera, synoptiskt bearbetade. II. Berlingska Boktryckeriet, Lund, 304 pp.
TIKHOMIROVAA. L. 1973: Morfoekologicheskie osobennosti i filogenez stafilinid (s katalogom fauny SSSR). [Morpho-ecological features and phylogeny of rove beetles (with the catalog of the fauna of the USSR)]. Akademiya Nauk SSSR, Moscow, 190 pp (in Russian).
TISHECHKIN A. K. \& CLINE A. R. 2008: The beetle (Coleoptera) fauna of pocket gopher burrows in Louisiana. Proceedings of the Entomological Society of Washington 110: 331-339.
TOKAREVA A. S., KONSTANTINOV F. V., BRUNKE A. J. \& SOLODOVNIKOV A. 2021: DNA-barcode and endophallus morphology delimit congruent species in a systematic revision of the oxyporine rove beetles of Russia (Coleoptera: Staphylinidae: Oxyporinae). Contributions to Zoology 90: 344-407.
TOLEUTAEV S. S. \& ULYKPAN K. 2015: To the fauna of stratobiont staphylinids of Saur Mountain Ridge (Eastern Kazakhstan). Pp. 41-45. In: Abstracts of scientific communications from the international conference, December 30: in 8 parts. Part 1. AR-Consalt, Moscow, pp. 41-45 (in Russian).
TOPP W. 1979: Vergleichende Dormanzuntersuchungen an Staphyliniden (Coleoptera). Zoologische Jahrbücher, Abteilung für Systematik, Ökologie und Geographie der Tiere 106: 1-49.
TÓTH L. 1984: 11 Füzet [11. Booklet]. Holyvák [Rove beetles] VII. Staphylinidae VII. Magyarország Állatvilága Fauna Hungariae 159: VII Kötet [Volume] (Coleoptera II). Akadémiai Kiadó, Budapest, 142 pp (in Hungarian).
TÓTHMÉRÉSZ B., NAGY D. D., MIZSER S., BOGYÓ D. \& MAGURA T. 2014: Edge effects on ground-dwelling beetles (Carabidae and Staphylinidae) in oak forest-forest edge-grassland habitats in Hungary. European Journal of Entomology 111: 686-691.
TOTTENHAM C. E. 1949: The generic names of the British Staphylinidae with a check list of the species. Pp. 345-466. In: The generic names of British insects, Part 9. Royal Entomological Society, London, 466 pp.
TRONQUET M. 2006: Catalogue iconographique des coléoptères des Pyrénées-Orientales. Volume I (édition revue et augmentée). Staphylinidae. Revue de l'Association Roussillonnaise d'Entomologie 15 (Supplément): 1-127.
UHLIG M., UHLIG B., VOGEL J. \& HERGER P. 2006: Zur Kurzflüglerfauna der Schweiz (Coleoptera: Staphylinidae). Entomologische

Berichte (Luzern) 56: 21-64.
VICKERS K. \& BUCKLAND P. C. 2013: 7.4. The Coleoptera remains from toftanes. Acta Archaeologica 84: 157-175.
VORST O., CUPPEN J., NUNEN F. van, HEIJERMAN T., DEES A., LANGEVELD S. \& EDZES H. 2009: Excursieverslag Serooskerke (Veere) - 31 augustus-2 september 2007. [Excursion report Serooskerke (Veere) - 31 August-2 September 2007]. Sektie Everts Info 82: 12-18 (in Dutch).
WATERHOUSE G. R. 1858: Catalogue of British Coleoptera. Taylor \& Francis, London, 117 pp .
WEBSTER R., SMETANA A., SWEENEY J. \& DEMERCHANT I. 2012: New Staphylinidae (Coleoptera) records with new collection data from New Brunswick and an addition to the fauna of Quebec: Staphylininae. ZooKeys 186: 293-348.
WELCH R. C. 1993: Ovariole development in Staphylinidae (Coleoptera). Invertebrate Reproduction and Development 23: 225-234.
WEN J., NIE Z. L. \& ICKERT-BOND S. M. 2016. Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering
land bridge from late Cretaceous to Neogene. Journal of Systematics and Evolution 54: 469-490.
WESTWOOD J. O. 1838: An introduction to the modern classification of insects; founded on the natural habits and corresponding organization of the different families 1. Longman, Orme, Brown, Green and Longmans, London, xii +462 pp .
WHITEHEAD P. F. 1991: The genus Quedius Stephens. Coleopterist's Newsletter 42: 5-6.
WILL K. W. \& RUBINOFF D. 2004: Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20: 47-55.
WÜSTHOFF W. 1938: Die Forcipes der mir bisher bekannt gewordenen Arten der Gattung Quedius. Entomologisk Tidskrift 59: 214-223.
ZANETTI A. 2015: Second contribution to the knowledge of the rove beetles (Coleoptera: Staphylinidae) of Val di Non/Nonstal (Trentino/ Südtirol, Italy). Gredleriana 15: 77-109.
ZERCHE L. 1977: Staphylinidae (Col.) aus dem Zechengrund bei Oberwiesenthal/Erzgeb. 8. Beitrag zur Faunistik der Coleoptera. Entomologische Nachrichten (Dresden) 21: 8-11.

