Hydrothermal anhydrite from the Banská Štiavnica epithermal base metal deposit (Slovak Republic)

MARTIN ŠTEVKO A PETER BAČÍK

Katedra mineralógie a petrológie, Prírodovedecká fakulta, Univerzita Komenského v Bratislave, Mlynská dolina G, 842 15 Bratislava, Slovenská republika

ŠTEVKO M., BAČÍK P. (2011): Hydrotermálny anhydrit z epitermálneho polymetalického ložiska Banská Štiavnica (Slovenská republika). - Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) **19/1**, 83-87. ISSN 1211-0329.

Abstract

Hydrothermal anhydrite was found in short and up to 8 cm thick carbonate vein with base metal mineralization at the 12th level of the Banská Štiavnica epithermal base metal deposit, Slovak Republic. It occurs as pale-blue to colourless tabular crystals up to 3 cm in size, which are intergrown to form groups of parallel or radial aggregates together with calcite, sphalerite, galena and gypsum. The crystals have a vitreous to silky lustre and typical perfect cleavage. The following unit-cell parameters were refined from powder X-ray data of anhydrite: a = 6.2967(2) Å, b = 6.9770(2) Å, c = 6.2268(2) Å and V = 303.53(1) Å³. An infrared absorption spectrum of anhydrite shows characteristic bands of antisymmetric stretching vibration modes (1157 and 1124 cm⁻¹) and antisymmetric bending vibration modes (675, 613 and 596 cm⁻¹) of SO₄ tetrahedra. A weak band which was observed at 511 cm⁻¹ represent most probably symmetric bending vibration of sulfate groups. Anhydrite together with gypsum represents products of relatively low-temperature solutions at the late stage of hydrothermal activity.

Key words: hydrothermal anhydrite, X-ray powder data, IR absorption spectra, base metal mineralization, Banská Štiavnica ore deposit, Slovak Republic

Úvod

Anhydrit patrí k najčastejším a masovo rozšíreným evaporitovým minerálom v sedimentárnych formáciách rôzneho veku. V Slovenskej republike sú významné ložiskové akumulácie anhydritu tohto typu viazané na permskotriasové sedimentárne sekvencie na lokalitách Bohúňovo (Zlocha 1965), Gemerská Ves-Šankovce (Halahyjová-Andrusovová et al. 1968), Spišská Nová Ves-Novoveská Huta (Ogurčák 1957), Smižany (Maheľ, Vozár 1971) atď. Oveľa zriedkavejšie a ekonomicky bezvýznamné sú výskyty anhydritu v dutinách vulkanických hornín, v skarnoch, na hydrotermálnych žilách a v žilách alpského typu. V Slovenskej republike bol hydrotermálny anhydrit zistený doteraz len na niekoľkých lokalitách. V asociácii spolu s kalcitom a sadrovcom bol identifikovaný na lokalite Pusté Pole pri Zlatej Bani v Slanských vrchoch (Ďuďa et al. 1981). Hydrotermálny anhydrit bol zistený aj v skarnoch na porfýrovom ložisku Vysoká-Zlatno v asociácii spolu s kalcitom a hydroxylellestaditom až fluorellestaditom (Koděra et al. 2009). Ako jeden z najmladších minerálov sa anhydrit vyskytuje v podobe inklúzií v sulfidoch alebo ako výplň dutín v Ca-Mn-Fe karbonátoch aj na skarnovom ložisku pri Tisovci (Hurai, Huraiová 2011).

Tento príspevok je venovaný detailnej charakteristike nového výskytu hydrotermálneho anhydritu, ktorý na epitermálnom polymetalickom ložisku Banská Štiavnica doteraz nebol identifikovaný.

Lokalizácia výskytu a geologicko-ložiskové pomery

Epitermálna drahokovová a polymetalická mineralizácia v okolí Banskej Štiavnice patrí k najväčším a najvýznamnejším akumuláciám tohto typu zrudnenia v rámci celého Karpatského oblúka. Mineralizácia je sústredená do rozsiahleho systému viac ako 120 hydrotermálnych žíl situovaných v centrálnej zóne Štiavnického stratovulkánu, ktorý je rozmermi viac ako 2000 km² najrozsiahlejším stratovulkánom stredoslovenských neovulkanitov. Na geologickej stavbe Štiavnického stratovulkánu sa podieľajú najmä produkty andezitového vulkanizmu, menej ryolity a bazalty. Vývoj štiavnického stratovulkánu prebiehal v neogéne (15.5 - 11.0 mil. rokov) vo viacerých etapách: a) etapa vzniku andezitového stratovulkánu, b) etapa vzniku depresie vo vrcholovej časti stratovulkánu, c) etapa vzniku kaldery a extruzívneho komplexu, d) etapa vzniku satelitných vulkánov, e) etapa vzniku hraste a ryolitový vulkanizmus, f) finálny bazaltový vulkanizmus (Konečný et al. 1995; Lexa et al. 1999; Konečný, Lexa 2001). Datovanie andezitov metódou stôp po štiepení uránu poskytlo veky 15.6±0.3 až 14.8±0.8 mil. rokov (Repčok 1978, 1981). Podložie stratovulkánu tvoria horninové komplexy kryštalinika veporika a jeho paleozoického a mezozoického obalu ako aj sedimentárne komplexy hronika a silicika (Konečný et al. 1995; Lexa et al. 1999). Žily s hydrotermálnou mineralizáciou sú viazané na systém postkalderových hrastových zlomov a sú vyvinuté predovšetkým v andezite, kremeň-dioritovom porfýre, granodiorite a diorite (Lexa et al. 1999; Lexa 2001; Jeleň et al. 2003). V miestach styku epitermálnych žíl s mezozoickými karbonátovými horninami došlo k vzniku metasomatického typu zrudnenia, ktoré je najvýznamnejšie vyvinuté v priestore medzi žilami Špitaler a Bieber (Koděra et al. 1966; Lexa et al. 1999). Generálne majú žily s drahokovovou a polymetalickou mineralizáciou smer SSV - JJZ a sklon 60 - 90° k V (Koděra 1956). K najdôležitejšími žilám na ložisku patria žily Grüner, Ján, Špitaler, Bieber a Terézia. Charakteristická je vertikálna zonálnosť zrudnenia. Najvrchnejšie časti žíl reprezentujú zónu bohatú na Ag a Au, ktorá obsahuje Ag minerály (akantit, sulfosoli Ag) a v minulosti bola hlavným predmetom ťažby. Nasleduje vrchná Pb-Zn zóna, ktorá je charakteristická prítomnosťou rodonitu, polymetalickým vývojom staršej a kremeňovokarbonátovým vývojom mladšej rudnej periódy. Spodná Pb-Zn zóna je typická prítomnosťou polymetalických rúd (galenit, sfalerit) v oboch rudných periódach. V najhlbších častiach žíl je prítomná Cu-zóna s prevahou chalkopyritu

Obr. 1 Lokalizácia výskytu s anhydritom na 12. obzore Novej šachty.

Metodika

Röntgenové práškové údaje anhydritu boli získané pomocou difraktometra Bruker D8 Advance (laboratóriu RTG difrakcie SOLIPHA, PriF UK, Bratislava) za nasledovných podmienok: anóda/filter Cu/Ni, detektor LynxEye, napätie 40 kV, prúd 40 mA, krok 0.01° 20, čas 3 s/krok, rozsah merania 2 - 65° 20, ako preparát sme použili vyseparovanú monominerálnu vzorku, ktorá bola rozomletá v achátovej miske. Takto pripravený práškový preparát bol pre zníženie pozadia záznamu nanesený na nosič zhotovený z monokryštálu Si. Získané údaje boli vyhodnotené pomocou softvéru Bruker DIFFRAC^{plus} EVA. Mriežkové parametre anhydritu boli vypočítané a spresnené rietveldovou metódou pomocou programu Bruker DIFFRAC^{plus} TOPAS.

Fourierovská infračervená (FTIR) spektroskopia anhydritu v strednej oblasti (4000 - 400 cm⁻¹) bola prevedená na spektrometri Nicolet 6700 (Ústav anorganickej chémie SAV, Bratislava) s DTSG detektorom. Vzorka bola pripravená v podobe KBr tablety (1 mg vzorky a 200 mg KBr). Za účelom odstránenia vzdušnej vlhkosti z KBr bola ešte pred meraním vylisovaná tableta so vzorku 24 hodín sušená v peci pri teplote 110 °C. Získané spektrum bolo upravené v programe OMNIC 8.1 (Nicolet Instruments Corp.).

Mikrofotografia anhydritu boli vyhotovené na stereoskopickom mikroskope Olympus SZ61 s pripojeným

> digitálnym fotoaparátom Olympus SP-350 (PriF UK, Bratislava) a pomocou softvéru QuickPHOTO MICRO 2.2 a Deep Focus 3.1.

Výsledky

Výskyt anhydritu bol zistený na 12. obzore ložiska Banská Štiavnica, približne 200 m na JZ od náraziska Novej šachty (obr. 1).

Hydrotermálny anhydrit bol zistený ako súčasť výplne 8 cm hrubej a 70 cm dlhej, šošovkovitej karbonátovej žily s ojedinelou polymetalickou mineralizáciou, ktorá je vyvinutá v alterovanom andezite v strope chodby. V puklinách andezitu v okolí žily sú časté impregnácie pyritu. Anhydrit vytvára svetlomodré až číre max. 3 cm veľké tabuľkovité kryštály s dobre pozorovateľnou štiepateľnosťou a skleným až perleťovým leskom. Jednotlivé kryštály sú paralelne usporiadané alebo vytvárajú radi-

Obr. 2 Svetlomodré radiálne agregáty anhydritu v asociácii spolu s bieložltým kalcitom. Šírka záberu 15 mm. Foto M. Števko.

Obr. 3 Idealizovaný profil žilou s výskytom anhydritu. Legenda: 1 - hydrotermálne premenený andezit; 2 kremeň; 3 - sfalerit; 4 - galenit; 5 - kalcit; 6 - anhydrit; 7 - sadrovec.

h	k	Ι	d _{obs.} [Å]	I _{obs.} [%]	d _{calc.} [Å]
1	1	1	3.8587	4	3.8685
2	0	0	3.4848	94	3.4933
0	2	0	3.4799	100	3.4885
0	0	2	3.1094	4	3.1134
0	1	2	2.8408	15	2.8438
1	2	1	2.7902	3	2.7921
2	2	0	2.4685	4	2.4685
2	0	2	2.3226	10	2.3243
0	2	2	2.3212	10	2.3228
2	1	2	2.2035	8	2.2042
3	0	1	2.1778	6	2.1787
3	1	1	2.0819	4	2.0819
1	3	1	2.0799	3	2.0799
1	0	3	1.9897	3	1.9894
2	2	2	1.9343	2	1.9343
0	3	2	1.8653	7	1.8649
3	2	1	1.8495	2	1.8486
4	0	0	1.7467	5	1.7467
0	4	0	1.7443	7	1.7443
2	3	2	1.6453	4	1.6446
3	3	1	1.5920	1	1.5910
4	2	0	1.5621	2	1.5618
2	4	0	1.5612	2	1.5605
4	0	2	1.5233	1	1.5233
0	4	2	1.5217	1	1.5217
4	1	2	1.4883	2	1.4869

Tabuľka 1 Práškový rentgenový difrakčný záznam

anhydritu z Banskej Štiavnice

Tabuľka 2 Mriežkové parametre anhydritu z Banskej Štiavnice (indexácia v rombickej priestorovej grupe Amma) a ich porovnanie s publikovanými údajmi

lokalita	citácia	a [Å]	b [Å]	c [Å]	V [Å ³]
Banská Štiavnica (SR)	táto práca	6.9867(2)	6.9770(2)	6.2268(2)	303.53(1)
Leopoldshall (DE)	Hawthorne, Ferguson (1975)	6.993(2)	6.995(2)	6.245(1)	309.70
Hants County, New Scotia (CAN)	Antao (2011)	7.00032(2)	6.99234(1)	6.24097(1)	305.487(1)

álne agregáty (obr. 2), ktoré sú v rámci žily nepravidelne distribuované. V asociácii spolu s anhydritom sa ako staršie minerály vyskytujú drúzy čírych kryštálov kremeňa, agregáty hnedého až žltohnedého sfaleritu, galenit a bieložlté kryštalické agregáty kalcitu (obr. 3). Ako najmladší minerál v tejto asociácii vystupuje sadrovec (tzv. mariánske sklo), ktorý úplne vypĺňa voľné priestory medzi agregátmi anhydritu a čiastočne ho na kontakte a po puklinách zatláča. Postupnosť kryštalizácie minerálov v žile s anhydritom je nasledovná: kremeň \rightarrow sfalerit \rightarrow galenit \rightarrow kalcit \rightarrow anhydrit \rightarrow sadrovec. Na viacerých miestach v blízkosti výskytu s anhydritom boli v hydrotermálne alterovaných andezitoch zistené až 12 cm široké a viac ako 1 m dlhé pukliny a drúzové dutiny s kalcitom, ktoré sú úplne vyplnené čírymi tabuľkovitými agregátmi mariánskeho skla. Vzácne bol sadrovec zistený aj ako vláknité max. 6 cm hrubé žilky bielej farby (tzv. selenit).

Práškové rtg. difrakčné údaje (tab. 1) ako aj vypočíta-

né a spresnené mriežkové parametre anhydritu z Banskej Štiavnice (tab. 2) sú vo veľmi dobrej zhode s publikovanými údajmi ako aj s údajmi vypočítanými z kryštálovej štruktúry anhydritu (Hawthorne, Ferguson 1975). Infračervené absorpčné spektrum anhydritu zo študovanej lokality (obr. 4) sa tiež veľmi dobre zhoduje s údajmi publikovanými pre túto fázu (napr. Hezel, Ross 1966; Makreski et al. 2005; Lane 2007). Sulfátová resp. síranová skupina sa prejavila pásmi antisymetrických valenčných (1157 a 1124 cm⁻¹) a troma pásmi antisymetrických deformačných vibrácií (675, 613 a 596 cm⁻¹), ktoré sú charakteristické pre anhydrit. Nevýrazný pás pri hodnote 511 cm⁻¹ zodpovedá najpravdepodobnejšie symetrickej deformačnej vibrácii SO₄ skupín (obr. 4, tab. 3).

Anhydrit vznikol kryštalizáciou pri relatívne nízkych teplotách ako jeden z najmladších hydrotermálnych minerálov v rámci záverečného štádia vývoja hydrotermálnej polymetalickej mineralizácie. Skutočnosť, že ide o nízkotermálnu fázu potvrdzuje aj jeho výskyt v asociácii spolu s mladším sadrovcom nakoľko bolo experimentálne potvrdené (napr. Hardie 1967; Blount, Dickson 1973) že pri teplotách nižších ako 60 °C je stabilnou fázou sadrovec. Sadrovec kryštalizoval ako najmladší hydrotermálny minerál v prázdnych priestoroch medzi agregátmi anhydritu alebo samostatne v drúzových dutinách na staršom kremeni, sulfidoch a kalcite.

Diskusia a záver

Pravdepodobne najznámejším výskytom hydrotermálneho anhydritu je skarnové ložisko Naica v provincii Chihuahua v Mexiku, kde sa v asociácii spolu s kalcitom, sadrovcom, fluoritom, sfaleritom a galenitom často vyskytujú až 10 cm veľké svetlomodré kryštály anhydritu (Panczner 1987; Megaw et al. 1988). Kryštály hydrotermálneho anhydritu sú známe tiež z lokality Sunnyside mine pri Howardsville v Colorade, USA (Eckel 1997), Casapalca mine v provincii Lima v Peru (Crowley et al. 1997) a z uránového ložiska Hartenstein v Sasku, Nemecko (Hochleitner, Weis 2002). Hydrotermálny anhydrit je hojný aj na epitermálnych Cu-Au ložiskách Radka a Elshitsa v Bulharsku (Moritz et al. 2004) a na 🔄 porfýrovom Cu-Au ložisku Grasberg v Indonézii (Rubin, Kyle 1997). Takmer na všetkých týchto lokalitách sa anhydrit vyskytuje ako jeden z najmladších hydrotermálnych minerálov, najčastejšie v drúzových dutinách, kde narastá na staršie sulfidy a karbonáty. V rovnakej pozícii sa vyskytuje aj anhydrit v Banskej Štiavnici. Na ložisku Naica v Mexiku boli nájdené aj kryštály anhydritu uzatvárané v mladšom sadrovci (Megaw, ústna informácia). Naopak kryštalický anhydrit v dutinách magmatických hornín čas-

to vystupuje ako jeden z najstarších minerálov a býva paramorfovaný mladším prehnitom alebo kremeňom, napr. v dutinách trapových bazaltov v oblasti New Jersey v USA (Petters 1984; Imbriacco 2009) a v provincii Rio Grande do Sul v Brazílii (Cornejo, Bartorelli 2010). Akcesoricky bol anhydrit zistený aj ako primárny magmatický minerál v andezitoch a dacitoch v oblasti Yanacocha v Peru (Chambefort et al. 2008) a plutonických horninách na Cu-Mo porfýrovom ložisku El Teniente v Čile (Stern et al. 2007). Veľké množstvá hydrotermálneho anhydritu boli zistené tiež v oblasti stredooceánskych chrbtov (Ames et al. 1993; Teagle et al. 1998; Pašava et al. 2007) a na ložiskách typu Kuroko (Ogawa et al. 2007). Historicky najznámejšou lokalitou anhydritu na žilách alpského typu je Simplonský tunel v kantóne Wallis vo Švajčiarsku, kde boli nájdené až 30 cm veľké fialové kryštály (Hochleitner, Weis 2002). Fialové kryštály anhydritu do 8 cm boli nájdené v puklinách počas razby Gotthardského tunela v kantóne Uri (Amacher et al. 2005). Idiomorfné krvštálv anhvdritu v podobe inklúzií v kryštáloch kremeňa boli zistené aj v oblasti Gredetschtal v kantóne Wallis (Schmidt, Weis 2011).

Na epitermálnom polymetalickom ložisku Banská Štiavnica bol zistený výskyt hydrotermálneho anhydritu v asociácii spolu s kremeňom, sfaleritom, galenitom, kalcitom a sadrovcom. Rentgenové práškové difrakčné údaje, vypočítané mriežkové parametre ako aj FTIR spektrum anhydritu zo študovanej lokality sú v dobrej zhode s publikovanými údajmi.

Obr. 4 FTIR spektrum anhydritu z Banskej Štiavnice (400 - 4000 cm⁻¹).

Tabuľka 3 Vlnočty a absorbancia pásov jednotlivých vibrácií väzieb v IČ spektre anhydritu z Banskej Štiavnice a ich interpretácia

	P	
∨ (cm⁻¹)	Absor- bancia	Тур
1157	1.000	$v_a^{}$ - antisymetrická valenčná vibrácia SO $_4^{}$
1124	0.857	$v_a^{}$ - antisymetrická valenčná vibrácia SO $_4^{}$
675	0.391	δ - antisymetrická deformačná vibrácia $\text{SO}_{\!_4}$
613	0.306	δ - antisymetrická deformačná vibrácia $\text{SO}_{_{\!\!4}}$
596	0.346	δ - antisymetrická deformačná vibrácia $\text{SO}_{_{\!\!4}}$
511	0.013	δ - symetrická deformačná vibrácia SO $_{\!$

Poďakovanie

Autori ďakujú Ing. Petrovi Paulišovi, Ing. Jiřímu Čejkovi, DrSc. a Mgr. Danielovi Ozdínovi, PhD. za kritické posúdenie príspevku a cenné pripomienky, ktoré pomohli zvýšiť jeho úroveň. Táto práca bola podporená Agentúrou na podporu výskumu a vývoja na základe zmluvy č. APVV VVCE-0033-07.

Literatúra

- Amacher P., Weis S., Praeger M. (2005): Neufunde: Anhydrit uns Pyrrhotin aus dem Gotthard-Basistunnel. - Lapis 30, 9, 28-33.
- Ames D. E., Franklin J. M., Hannington M. D. (1993): Mineralogy and geochemistry of active and inactive chimneys and massive sulfide, Middle Valley, northern Juan de Fuca Ridge: An evolving hydrothermal system. - Can. Mineral. **31**, 4, 997-1024.
- Antao S. M. (2011): Crystal-structure analysis of four mineral samples of anhydrite, CaSO₄, using synchrotron high-resolution powder X-ray diffraction data. -*Powder Diffr.* **26**, 4, 326-330.
- Bakos F., Chovan M. (2004): Zlato na Slovensku. -1-298, Slovenský skauting, Bratislava.
- Blount C. W., Dickson F. W. (1973): Gypsum-anhydrite equilibria in systems CaSO₄-H₂O and CaCO₃-NaCl-H₂O. - Am. Mineral. 58, 3-4, 323-331.
- Cornejo C., Bartorelli A. (2010): Minerals and precious stones of Brasil. -1-704, Solaris Cultural Publications, Sao Paolo.

- Crowley J. A., Currier R. H., Szenics T. (1997): Mines and minerals of Peru. - *Mineral. Rec.* 28, 4, 1-98.
- Ďuďa R., Černý P., Kaličiak M., Kaličiaková E., Tözsér J., Ulrych J., Veselovský F. (1981): Mineralógia severnej časti Slanských vrchov. - *Miner. Slov.*, *Monografia* 2, 1-98.
- Eckel E. B. (1997): Minerals of Colorado. -1-665, Fulcrum Publishing, Golden.
- Háber M., Jeleň S., Kovalenker V., Černyšev I. (2001): Model epitermálneho zrudnenia banskoštiavnického rudného poľa. - *Miner. Slov.* 33, 3, 215-224.
- Halahyjová-Andrusovová G., Borza K., Martíny E. (1968): Príspevok k riešeniu genézy zrudnenia v Šankovciach (Spišsko-gemerské rudohorie). - Acta geol. geogr. Univ. Comen., Geol., 13, 55-89.
- Hardie L. A. (1967): The gypsum-anhydriten equilibrium at one atmosphere pressure. *Am. Mineral.* **52**, 1-2, 171-200.
- Hawthorne F. C., Fergoson R. B. (1975): Anhydrous sulphates II. Refinement of the crystal structure of anhydrite. - *Can. Mineral.* **13**, 3, 289-292.
- Hezel A., Ross S. D. (1966): Forbidden transitions in the infra-red spectra of tetrahedral anions-III. Spectrastructure correlations in perchlorates, sulphates and phosphates of the formula MXO₄. - *Spectrochim. Acta* 22, 11, 1949-1961.
- Hochleitner R., Weis S. (2002): Steckbrief Anhydrit. *Lapis* **27**, 10, 8-11.
- Hurai V., Huraiová M. (2011): Origin of ferroan alabandite and manganoan sphalerite from the Tisovec skarn, Slovakia. - Neues Jb. Miner. Abh. 188, 2, 119-134.
- Chambefort I., Dilles J. H., Kent A. J. R. (2008): Anhydrite-bearing andesite and dacite as source of sulfur in magmatic-hydrothermal mineral deposits. - *Geology* 36, 9, 719-722.
- Imbriacco F. A. (2009): The Braen quarry, Haledon, Passaic County, New Jersey. - Mineral. Rec. 40, 6, 511-524.
- Jeleň S., Háber M., Koděra P., Lexa J. (2003): Ore mineralization of the Banská Štiavnica stratovolcano, Slovakia. - Acta Miner.-Petrogr., Abstract Series 1, 49.
- Koděra M. (1956): Paragenéza a chemizmus Terézia žily v Banskej Štiavnici. - Geol. Práce, Zoš. 42, 3-110.
- Koděra M. (1963): Gesetzmässigkeinten der zonalen Verteilung der Mineralisation in der subvulkanischen polymetallischen Lagerstätte Banská Štiavnica. - In: Symposium: Problems of postmagmatic ore deposition. ÚÚG, Praha, 184-188.
- Koděra M., Michalenko J., Pastor J. (1966): Nové poznatky o metasomatickom zrudnení a jeho perspektívach na polymetalickom ložisku Banská Štiavnica. - *Geol. Práce, Spr.,* 39, 5-30.
- Koděra P., Uher P., Ozdín D., Kollárová V., Lexa J. (2009): Monticellit, clintonit a hydroxylellestadit-fluorellestadit: vzácne skarnové minerály na Cu-Au porfýrovo-skarnovom ložisku Vysoká-Zlatno (štiavnický stratovulkán). -*Miner. Slov.* 41, 2, 169-178.
- Konečný V., Lexa J., Hojstričová V. (1995): The Central Slovakian Volcanic Field: a review. - Acta Vulcanol. 7, 63-78.
- Konečný V., Lexa J. (2001): Stavba a vývoj štiavnického stratovulkánu. *Miner. Slov.* **33**, 3, 179-196.
- Kovalenker V. A., Jeleň S., Levin K. A., Naumov V. B., Prokofyev V. Y., Rusinov V. I. (1991): Mineral assemblages and physical-chemical model of the formation of gold-silver-polymetallic mineralization on the deposit Banská Štiavnica (Central Slovakia). - Geol. Carpath.

42, 5, 291-302.

- Lane M. D. (2007): Mid-infrares emission spectroscopy of sulfate and sulfate-bearing minerals. - *Am. Mineral.* 92, 1, 1-18.
- Lexa J. (2001): Metalogenéza štiavnického stratovulkánu. - *Miner. Slov.* **33**, 3, 203-214.
- Lexa J., Štohl J., Konečný V. (1999): The Banská Štiavnica ore district: relationship between metallogenic processes and the geological evolution of a stratovolcano. - *Miner. Deposita* 34, 5-6, 639-654.
- Maheľ M., Vozár J. (1971): Príspevok k poznaniu permu a triasu v severogemeridnej synklinále. *Geol. Práce*, *Spr.*, 56, 47-66.
- Makreski P., Jovanovski G., Dimitrovska S. (2005): Minerals from Macedonia: XIV. Identification of some sulfate minerals by vibrational (infrared and Raman) spectroscopy. - Vib. Spectrosc. 39, 2, 229-239.
- Megaw P. K. M., Ruiz J., Titley S. R. (1988): High-temperature, carbonate-hosted Ag-Pb-Zn(Cu) deposits of Northern Mexico. - *Econ. Geol.* 83, 8, 1856-1885.
- Moritz R., Kouzmanov K., Petrunov R. (2004): Late Cretaceous Cu-Au epithermal deposits of the Panagyurishte district, Srednogorie zone, Bulgaria. - Schweiz. Miner. Petrog. 84, 79-99.
- Ogawa Y., Shikazono N., Ishiyama D., Sato H., Mizuta T., Nakano T. (2007): Mechanism for anhydrite and gypsum formation in the Kuroko massive sulfide-sulfate deposits, north Japan. *Miner. Deposita* **42**, 3, 219-233.
- Ogurčák Š. (1957): Anhydrit-sadrovcové ložiská pri Spišskej Novej Vsi. - Geol. Práce, Spr., 11, 109-115.
- Panczner W. D. (1987): Minerals of Mexico. 1-459, Van Nostrand Reinhold, New York.
- Pašava J., Vymazalová A., Petersen S. (2007): PGE fractionation in seafloor hydrothermal systems: examples from mafic and ultramafic-hosted hydrothermal fields at the slow-spreading Mid-Atlantic Ridge. - *Miner. Deposita* 42, 4, 423-431.
- Petters J. J. (1984): Triassic traprock minerals of New Jersey. *Rocks and Minerals* **54**, 4, 157-183.
- Repčok I. (1978): Vek niektorých stredoslovenských neovulkanitov zistený metódou stôp po delení uránu. -*Geol. Práce*, Spr., 71, 69-76.
- Repčok I. (1981): Datovanie niektorých stredoslovenských neovulkanitov metódou stôp po delení uránu. - Západ. Karpaty, Sér. Mineral. Petrogr. Geochém. Metalogen. 8, 59-104.
- Rubin J. N., Kyle J. R. (1997): Precious metal mineralogy in porphyry-, skarn- and replacement-type ore deposits of the Ertsberg (Gunung Bijih) District, Irian Jaya, Indonesia. - *Econ. Geol.* 92, 5, 535-550.
- Schmidt W., Weis S. (2011): Chabasit und Anhydritquartz aus dem Gredetschtal, Wallis (Schweiz). - *Lapis* **36**, 5, 21-24.
- Stern C. H., Funk J. A., Skewes A., Arévalo A. (2007): Magmatic anhydrite in plutonic rocks at the El Teniente Cu-Mo deposit, Chile, and the role of sulfur and copper rich magmas in its formation. - *Econ. Geol.* **102**, 7, 1335-1344.
- Teagle D. A. H., Alt J. C., Halliday A. N. (1998): Tracing the chemical evolution of fluids during hydrothermal recharge: Constrains from anhydrite recovered in ODP hole 504B. - *Earth Planet. Sci. Letters* **155**, 3-4, 167-183.
- Zlocha J. (1965): Správa o vyhľadávaní zásob sadrovca a anhydritu. - *Zpr. geol. Výsk. v Roku 1964*, 2, 30-31.