Mladopaleozoické vulkanity Žatecka, sz. Čechy

Late Paleozoic volcanics of the Žatec area, NW Bohemia

FERRY FEDIUK¹⁾ A ZDENĚK ŘANDA²⁾

¹⁾ GIS-Geoindustry, Jindřicha Plachty 16, 150 00 Praha - Smíchov ²⁾ Ústav jaderné fyziky AV ČR, v.v.i., Husinec Řež 130, 250 68 Řež

FEDIUK F., ŘANDA Z. (2011): Mladopaleozoické vulkanity Žatecka, sz. Čechy. - Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) **19/2**, 138-144. ISSN:1211-0329.

Abstract

A series of bore holes around the town of Žatec revealed a large complex of Permo-Carboniferous (Gzhelian - Asselian) mafic volcanics 150 to 400 m beneath the Tertiary and Cretaceous sedimentary cover. The extent of it is estimated to 80 km² with the maximum thickness of 53 m consisting of several lava sheets. Peripheral volcanoclastic admixture in sediments enlarges the area to roughly 250 km². The rocks show mostly basaltic trachyandesite and in the minority of cases basaltic andesite compositions. Their chemistry is A/SA transitional, high-K and metaluminous, Th highly prevails over U. Acid volcanics, occurring frequently in the vicinity of the area, are entirely absent here. Some trace elements signature indicates a destructive plate margin affinity of these within plate volcanics.

Key words: Permo-Carboniferous, Kladno-Rakovník basin, basaltic andesite, basaltic trachyandesite (shoshonite), petrology, volcanology, geochemistry, tectonomagmatic setting

Úvod

Až do roku 1958, kdy z vrtu Ch-3 u Záhoří s. od Žatce konstatovali přítomnost tzv. melafyrů Kopecký a Malkovský, přetrvávala představa, že tmavé permokarbonské vulkanity, setrvačně zvané termínem melafyry, klasifikační komisí Mezinárodní unie geologických věd diskreditovaným, tak hojné v podkrkonošské a vnitrosudetské pánvi i pánvích skrytých pod křídou, do západních Čech na levém břehu Labe nepokračují, a že tu jsou v tomto

útvaru zastoupeny jen produkty vulkanismu kyselého. Zmíněný vrt prošel jako Ch-3a pod terciérem a křídou do vulkanitů, v nichž po 27.5 m v hloubce 375.4 m havaroval a po posunu vrtné soupravy o několik m pak jako Ch-3b pronikl "melafyrovým" lávovým sledem o mocnosti 53 m až do podložních permokarbonských sedimentů. Jeho profil s vulkanologickou interpretací uvádí Fediuk (in Malkovský, red., 1968). K výskytu tmavých vulkanitů z vrtu Ch-3 přibyly další nálezy z Kladenska a Rakovnicka, vesměs jen ojedinělé (Mašek 1961, 1973; Pešek 1996). Rozhodující obrat ve zmíněných představách přinesla až série mapovacích vrtů v okolí Žatce (Fediuk in Malkovský, red. 1968 a in Gabriel, red. 1969). Na jejich základě a dalších vrtů pro hydrogeologické účely se ukázalo, že v podloží terciéru a křídy v sz. výběžku kladensko-rakovnické pánve okolí Žatce jsou tmavé vulkanity významnou složkou pánevní výplně jako součást líňského souvrství v úrovni kolem rozhraní karbon/perm (gzhelian/asselian, cca 290 miliónů let). Jmenovitě jde o vrty Zk-1 Žabokliky, H-4 Chbany, Kl-1 Kluček, G-1 Veletice, G-2 Čeradice a Ch-3 Záhoří (obr. 1). Ani v náznacích zde nejsou doprovázeny kyselými členy, přestože v nedalekém sousedství výskyty ryolitových tufů, tufitů a dokonce ignimbritů jsou běžné (Prouza et al. 1963; Prouza 1965; Skoček 1965). Podle vrtných výsledků tyto tmavé vulkanity na Žatecku vytvářejí v hloubce 150 - 400 m pod povrchem a v úrovni nadmořských výšek od +100 do -150 m komplex (Žatecký vulkanický komplex, dále jen ŽVK) lávových příkrovů o mocnosti až přes 50 m a objemu kolem 1.5 km³ o rozloze přibližně 80 km². Lze předpokládat, že komplex, jehož těžiště a největší mocnosti jsou bezprostředně u Žatce, a kde dvojvrt Ch-3a,b zůstává i po pade-

Obr. 1 Mapka rozšíření permokarbonských vulkanitů Žatecka. Černá kolečka = vrty zastihující lávové horniny, prázdná kolečka = vrty zastihující vulkanoklastika a vulkanogenní fragmenty.

sáti letech nejvýznamnější informací o ŽVK, má půdorys tvaru nepravidelné elipsy o delší ose délky cca 11 km a směru VJV - ZSZ. Za touto konturou se objevují jen podružné výskyty vulkanoklastik ve formě jemnozrnného až drobnozrnného popelu, nepravidelně a ostrohranně útržkovitých klastů, místy i bomb a lapillů, jaké byly zjištěny např. ve vrtech NTb-9 u Nových Třebčic (Váně 1963), Kdv-1 u Zlovědic (Holub et al. 1981), Ms-8 u Maštova, Vou-1 u Vroutku, PS-5 uVrbičky a PS-7 u Podbořanského Rohozce (Pešek 1982). V úhrnu s tímto periferním a často jen sporadickým rozsevem vulkanoklastik (bez kyselých produktů), rozkládajícím se na ZJZ od hlavního centra a zčásti patrně produkovaným i vedlejšími centry jak naznačují výskyty bomb, obnáší rozloha ŽVK podle Peška (1982) nejméně 250 km² (obr. 1). Přesto za rozsahem obdobných vulkanických akumulastává (Fediuk 1967).

Petrografie a vulkanologie

Převažující petrografickou odrůdou vulkanitů ŽVK jsou rudohnědé mandlovce, v nichž výplň mandlí tvoří hmoty SiO₂, kalcit a chlorit; zeolity zjištěny nebyly. Vlastní vulkanity mají obvykle porfyrickou strukturu s ojedinělými relikty vyrostlic olivínu, hojně s fenokrysty pyroxenu a plagioklasu. Objemově silně převládající základní hmota má obvykle alteračně devitrifikovanou hemikrystalicky ofitickou (apointersertální) povahu, místy náznakově přecházející do struktury trachytické. Dominují v ní lištovité plagioklasy, které však obvykle bývají v prvním stádiu přeměny albitizovány, ve druhém pak argilitizovány. Odskelněná mesostaze je obvykle silně a disperzně prostoupena železitým pigmentem. Tato mandlovcovitá facie je vyvinuta především v horní poloze lávových příkrovů, kde je patrně degazačního původu, v menší míře při bázi příkrovů, kde nejspíš je projevem transvaporizačního procesu.

Ve vnitřní části příkrovu, zejména v případě příkrovů mocnějších, se mandle vytrácejí a vulkanit získává jemnozrnnou kompaktní texturu. Minerální složení se však v podstatě nemění, jen zrnitost mírně stoupá a podíl sklovité (zpravidla devitrifikované) mesostaze klesá místy až na nulu. V některých partiích této nemandlovcovité facie přechází rudo-

Obr. 4 Mikrofoto vulkanitu z vrtu Ch-3a s vyrostlicí lištovitého labradoritu. Zkřížené nikoly. Spodní strana obrázku 0.46 cm. Foto J. Šindelářová.

cí pod křídou východně od Labe značně zao- **Obr. 2** Mikrofoto vulkanitu z vrtu CH-3a s vyrostlicemi olivínu. Bez analystává (Fediuk 1967). zátoru. Spodní strana obrázku 0.46 cm. Foto J. Šindelářová.

Obr. 3 Mikrofoto vulkanitu z vrtu Ch-3a s chloritizovanou vyrostlicí pyroxenu. Bez analyzátoru. Spodní strana obrázku 0.46 cm. Foto J. Šindelářová.

Obr. 6 Klasifikační diagram TAS (Le Bas et al. 1986) s vyznačením rozptylového pole všech permokarbonských vulkanitů ČR. Plná linie = hranice 80 %, čárkovaná linie = hranice 99 %, plné kroužky = průmětné body vulkanitů Žatecka, ub = ultrabazické vulkanity, b = bazické vulkanity, im = intermediální vulkanity, k = kyselé vulkanity, BTA = pole bazaltických trachyandezitů, BA = pole bazaltických andezitů, A = alkalická série, SA = subalkalická série.

Obr. 5 Mikrofoto anortozitového kumulátu vulkanitu z vrtu CH-3a. Zkřížené nikoly. Spodní strana obrázku 0.46 cm. Foto J. Šindelářová.

hnědá barva horniny do tmavošedé, jako je tomu např. ve vrtu Zk-1 Žabokliky. Avšak ani v těchto případech nelze o úplné čerstvosti zpravidla hovořit.

Zcela mimořádný horninový typ se vyskytl ve vrtu Ch-3a. Vystupuje tu hornina sice zcela prostá mandlí, ale zato obsahující značné množství (až 30 %) vyrostlic jak tmavých, tak světlých, dosahujících velikosti až 1/2 cm. Tmavé vyrostlice jsou tvořeny jednak xenomorfními (korodovanými?) zrny olivínu (obr. 2), jednak klinopyroxenem, který bývá často chloritizován (obr. 3). Světlé vyrostlice patří hypautomorfnímu až automorfnímu, tlustě lištovitému a tabulkovitému plagioklasu o bazicitě středního labradoritu (obr. 4). Místy se tyto plagioklasové vyrostlice kumulují do monominerálních shluků povahy anortozitu (obr. 5), svědčící o značné frakcionační roli tohoto minerálu. Základní hmota strukturně kolísá mezi ofitickou a intersertální. Její hlavní složkou je bazický plagioklas, v podružném množství doprovázený primárním živcem alkalickým. V mesostazi dále vystupuje klinopyroxen, ruda (magnetit) a ± sklo. Tato facie je nejen nejčerstvější v rámci celého ŽVK, ale patří k nezachovalejším v rámci všech českých permokarbonských vulkanitů vůbec.

Kromě výše zmíněných lávových facií se v ŽVK objevují se zřetelným kvantitativním odstupem i vulkanoklastika. Vystupují ve dvojí podobě. Tou první a jen singulárně vystupující jsou chuchvalcovité argilitizované tufy v nejsvrchnější části vulkanického profilu vrtu Ch-3a. V jejich bezprostředním podloží následuje čerstvá lávová hornina popsaná v přechozím odstavci. Ve druhé, podstatně častější podobě, vystupují vulkanoklastika v podobě chaotické popelové hmoty, místy obsahující bomby nebo spíše vulkanogenní

Obr. 7 Diagram AFM (Irvine, Baragar 1971) s průmětnými body vulkanitů Žatecka.

valouny a lapili. Obvykle tvoří jen podružnou příměs v klastických sedimentech ve vrtech zastihujících periferní části ŽVK. U Maštova (vrt Ms-8, Kollert, red., 1981) byly zastiženy ve třech úrovních.

Geochemická charakteristika

Vážným problémem geochemického studia českých permokarbonských vulkanitů je skutečnost, že jejich výrazná většina je silně postižena alteracemi (hematitizací, limonitizací, argilitizací, zejména kaolinizací, karbonatizací, albitizací, sericitizací). Z toho plynou nejistoty o jejich předalteračním složení, jak na to důrazně upozornila studie Ulrycha et al. (2006). Problémy s alteracemi provázejí i řadu vulkanitů zjištěných vrty v ŽVK. Nicméně několik vzorků, na permokarbonské poměry relativně vysoké čerstvosti, tu bylo možno získat: jeden z vrtu ZK - 1 Žabokliky a hlavně šest z vrtu Ch - 3a u Záhoří. V tabulce 1 jsou uvedeny obsahy hlavních oxidů a stopových prvků včetně prvků vzácných zemin. Do souboru nebyla zařazena žádná z analýz hornin s výraznou alterací, projevující se nízkým součtem (indikujícím patrně zvýšené množství nestanoveného CO₂), značnými obsahy H₂O a vysokým poměrem Fe₂O₂ / FeÖ.

Výsledky jsou graficky hodnoceny diagramy a spidergramy na obrázcích 6 až 12 zpracované softwarem Janouška et al. (2006). V obrázku 6 (klasifikační diagram TAS) spadají průmětné body analýz do pole bazaltického trachyandezitu resp. jeho šošonitové odrůdy a zčásti na hranici s polem bazaltického andezitu do blízkosti dělící linie alkalické a subalkalické série. V obrázku 7 (diagram AFM) se body promítají do pole hornin alkalickovápenatých, což je mezi tmavými permokarbonskými vulkanity Čech jako celku běžný případ, přes občasný náběh k tholeiitické afinitě (Ulrych et al. 2004). Příznačným makrogeochemickým rysem žateckých vulkanitů je jejich vysoká draselnost, jak to dokumentuje diagram SiO₂ : K₂O na obrázku 8. Diagram na obrázku 9 hodnotí jejich aluminičnost, která je výrazně metaluminická. Ze spidergramu obrázku 10 plyne, že ve srovnání s průměrným složením primitivního pláště se zdejší vulkanity vyznačují až o dva řády vyššími obsahy stopových prvků skupiny "high fields strength" a leh-

Tabulka 1 Chemické analýzy sedmi permokarbonských vulkanitů Žateckého vulkanického komplexu (oxidy v hm. %, stopové prvky v ppm)

	1	2	3	4	5	6	7
SiO ₂	52.40	51.69	51.77	52.61	52.63	52.47	48.72
TiO ₂	1.92	1.95	1.81	1.76	1.83	1.84	1.71
Al ₂ O ₃	15.08	15.52	15.59	15.32	15.31	15.29	15.98
Fe ₂ O ₃	3.86	5.19	7.36	7.63	4.78	5.52	8.34
FeO	5.92	5.13	2.27	2.30	4.60	4.46	2.20
MnO	0.15	0.14	0.117	0.117	0.122	0.107	0.07
MgO	4.02	3.76	4.15	3.53	4.01	3.45	5.18
CaO	6.67	6.51	6.52	6.48	6.40	6.32	5.75
Na₂O	3.26	3.35	3.48	3.51	3.33	3.46	3.33
K₂O	2.27	2.18	1.66	1.73	2.13	2.20	2.56
P_2O_5	0.80	0.83	0.85	0.84	0.87	0.85	0.46
H ₂ O+	0.75	1.76	1.84	1.90	0.85	1.73	2.26
H ₂ O-	1.50	1.58	1.59	1.50	1.80	0.91	1.98
CO ₂	0.78						1.28
Celkem	99.38	99.59	99.367	99.127	98.662	98.607	99.82
Ва		600	860	859	670	720	710
Со		25.2	25.7	24.5	29.7	26.5	20
Cr		77.5	87.8	77.2	89.2	88.8	
Hf		13.3	12.92	12.22	12.26	12.58	
Rb		66.0	49.3	58.2	64.5	64.7	133
Sc		22.0	21.0	19.74	20.67	20.60	
Sr		322	327	350	350	310	
Та			2.30	2.17	2.25	2.20	
Th		8.6	9.15	8.97	8.49	8.59	
U			1.6	1.9	1.3	1.7	
V			163	165	167	176	120
Zn		111	162	146	155	153	150
Zr		840	710	650	635	710	
La	68.7	70.5	80.9	76.1	76.6	77.1	
Се	145.5	165	152.8	141.6	143.6	147.6	
Nd	73	84	68	68	67	68	
Sm	13.96	13.9	14.66	13.85	14.06	14.20	
Eu	3.12	2.8	3.11	2.98	2.96	3.09	
Gd	15.8	19.4	18.1				
Tb	2.03	1.70	1.96	1.89	1.89	1.76	
Dy	10.6		12.5	12.9	13.1	12.8	
Но	2.2	1.95	2.5	2.5	1.6	1.8	
Tm	0.8	1.30	0.40	1.09	0.90	0.40	
Yb	4.9	4.1	5.69	5.38	5.49	5.45	
Lu	0.71	0.89	0.85	0.76	0.85	0.80	

1 - vrt Ch-3a, hl. 368.1 m; 2 - vrt Ch-3a, hl. 372.20; 3 až 6 - vrt Ch-3a, hl. neudána; 7 - vrt Zk-1, hl. 314,5 m.

Analýzy oxidů: vzorky 1, 2 a 7 J. Adam, laboratoř Ústavu geologických věd Univerzity Karlovy, vzorky 3, 4, 5 a 6 M. Malá, J. Švec, V. Chalupský, laboratoř struktury a mechaniky hornin AV ČR Praha. Analýzy stopových prvků: vzorek 1 J. Bendl, Analytika Praha (INAA), vzorky 2 až 6 Z. Řanda, Ústav jaderné fyziky AV ČR v Řeži (INAA), vzorek 7 K. Absolon a L. Minařík, Ústav geologie a geotechniky ČSAV Praha (SPA).

8

0

Cs Rb Ba Th U Nb K La Ce Pb

Pr

Sr P

Nd Zr Sm

Ti Dy Y Yb Lu

kých vzácných zemin a slabším obohacením resp. ochuzením zejména o těžké vzácné zeminy. Nejvíce se tyto obsahy s normalizovanými hodnotami kolem jedné blíží průměrným hodnotám zemské kůry a to její horní části. Spidergram vzácných zemin v kazetovém provedení (obr. 11) ukazuje při poměrně vysokém poměru LREE/HREE zřetelnou, i když nepříliš výraznou negativní europiovou anomalii. Ta naznačuje, že frakcionační role plagioklasu není tak intenzivní, jaká by se podle petrografické charakteristiky (viz předchozí kapitola) dala očekávat. Obrázek 12 dokládá, že v ohledu tektono-magmatické pozice vykazují žatecké tmavé vulkanity, v geologickém ohledu evidentně vnitrodeskové, afinitu k diferenciátům destrukčního deskového okraje. Radioaktivitu zdejších hornin charakterizuje zvlášť výrazná převaha Th nad U.

Závěr

Leteckou magnetometrií byly sice v okolí Žatce zjištěny pozitivní anomálie (Šalanský 1967), ale jejich interpretace jako projevu vulkanických těles skrytých v hloubkách několika set metrů pod sedimentárním pokryvem, navíc se silně zoxidovanými feromagnetiky, nemohla být spolehlivá. O tmavých permokarbonských vulkanitech Žatecka jsou tak k dispozici informace získané výhradně z vrtů, neboť tyto horniny zpod permokarbonských a křídových sedimentů k povrchu nevystupují. Vrty však dokládají, že v hloubkách 150 až 400 m tyto horniny ve facii lávových příkrovů tvoří ve stratigrafické pozici kolem rozhraní karbon/perm komplex o rozloze zhruba 80 km² respektive 250 km², pokud k němu připojíme i výskyty rozsevu vulkanoklastik. Horniny mají převážně charakter bazaltických trachandezitů (šošonitů), vyznačující se přechodným charakterem rozhraní alkalické a subalkalické série s vápenatoalkalickou afinitou, vysokou draselností a metaluminickou povahou. V obsazích stopových prvků je pro ně příznačné výrazné obohacení zejména prvků skupiny "high field strenght", srovnatelné s průměrnými obsahy charakterizujícími svrchní část zemské kůry. Bez izotopových dat zůstává však sporné, zda tato skutečnost je výsledkem vytavení z pláště obohace-

Obr. 8 Diagram SiO₂ : K₂O (Peccerillo, Taylor 1976) kategorií draselnosti vulkanitů Žatecka.

Obr. 9 Diagram aluminičnosti (Shand 1947) vulkanitů Žatecka.

Obr. 10 Spidergram obsahů stopových prvků ve vulkanitech Žatecka v normalizaci k primitivnímu plášti (Sun, Mc.Donough 1989). ného kolizními pochody o litofilní prvky, nebo frakcionačního tavení korových (ultra)bazik. Geologický kontext řadí studované vulkanity zjevně do vnitrodeskové pozice a geochemické parametry, ukazující na pozici v režimu kolizního deskového okraje, patrně souvisejí s metasomatickým ovlivněním předchozí variskou kolizí.

Poděkování

Za podnět k této studii, její podporu a cenné kritické připomínky děkujeme Jaromíru Ulrychovi z Geologického ústavu AV ČR. Obdobně jsme díky zavázání Vladimíru Rapprichovi z České geologické služby.

Obr. 12 Diagram Th : Ta : 1/3 Hf (Wood 1980) s průmětnými body vulkanitů Žatecka spadajícími do pole CAB (alkalickovápenaté bazalty destruktivních deskových okrajů).

Literatura

- Boynton W. V. (1984): Cosmochemistry of the rare earth elements: meteorite studies. - In Henderson P., ed.: Rare earth element geochemistry. - Elsevier, 63-114.
- Fediuk F. (1967): Permokarbonische Vulkanite unter der Böhmischen Kreidetafel. - Ber. deutsch. Ges. geol. Wiss. B - Miner. Lagerst. 12, 2, 173-179, Berlin.
- Gabriel M., red. (1969): Základní geologická mapa 1 : 25 000 list M-33-64-A-a Žatec. - MS, Ústř. úst. geol., Praha.
- Holub V., Skoček V., Tásler R. (1980): Nová litostratigrafická jednotka permského stáří v permokarbonu středočeské oblasti. - Věst. Ústř. Úst. geol. 56, 193-201.
- Irvine T. N., Baragar W. R. A. (1971): A guide to the chemical classification of common volcanic rocks. - Cand. Jour. Earth Sci. 8, 523-548.
- Janoušek V., Farrow C. M., Erban V. (2006): Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). - Jour. Petrol. 47, 1255-1259.
- Kollert A., red. (1981): Žatecko Doupovské hory. MS, Geofond Praha.

- Kopecký L., Malkovský M. (1958): O nálezech melafyru v kladensko-rakovnickém permokarbonu. Věst. Ústř. Úst. geol. **33**, 198-201.
- Le Bas M. J., Le Maitre R. W., Streckeisen A., Zanettin B. (1986): A chemical classification of volcanic rocks based on the total alkali - silica diagram. - *Jour. Petrol.* 27, 745-750.
- Malkovský M., red. (1968): Vysvětlivky k základní geologické mapě 1 : 25 000 list M-33-52-C-c Staňkovice.
 - MS, Ústř. úst. geol., Praha.
- Mašek J. (1961): Nejjižnější výskyty melafyrů v permokarbonu kladensko-rakovnické pánve. - Věst. Ústř. Úst. geol. **36**, 439-441.
- Mašek J. (1973): Vulkanické produkty středočeského karbonu. - Sbor. geol. Věd, Ř. G 24, 73-124.
- Peccerillo A., Taylor S. R. (1976): Geochemistry ogf Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. - *Contr. Mineral. Petrol.* 58, 63-81.

- Pešek J. (1982): Anomálie ve vývoji karbonu mezi Plzní a Žatcem. - In: Sbor. IV. uhelné geol. Konf., Přír. Fak. Univ. Karlovy, 115-125.
- Pešek J. (1996): Geologie pánví středočeské svrchnopaleozoické oblasti. - Čes. geol. úst., Praha.
- Prouza V. (1965): Permokarbon v podloží křídy v Poohří. - Sbor. geol. Věd, Ř. G 9, 79-87.
- Prouza V., Sattran V., Skoček V. (1963): Nové poznatky o permokarbonu a jeho podloží v Poohří. - *Věst. Ústř. Úst. geol.* **38**, 5, 337-340.
- Shand S. J. (1947): Eruptive rocks. Their genesis, composition, classification and their relation to ore-deposits. - John Wiley publishing.
- Skoček V. (1965): Permokarbonské vulkanity v Poohří a na Mělnicku. - Sbor. geol. Věd., Ř. G 9, 115-172.
- Sun S. S., McDonough W. F. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. - In: Sounders A. D., Norry M. J. (Eds.): Magmatism in the Ocean Basins. - *Geol. Soc. London Spec. Publ.* **42**, 313-345.

- Šalanský K. (1967): Základní geofyzikální výzkum ČSSR, letecké geofyzikální mapování 1 : 25 000 MXIX severozápadní Čechy - severní část. - MS, Geofond Praha.
- Ulrych J., Fediuk F., Lang M., Martinec P. (2004): Late Paleozoic volcanic rocks of the Intra-Sudetic Basin, Bohemian Massif: petrological and geochemical characteristics. - *Chemie der Erde* **64**, 127-153.
- Ulrych J., Pešek J., Štěpánková-Svobodová J., Bosák P., Lloyd F. E., Seckendorff von V., Lang M., Novák J. L. (2006): Permo-Carboniferous volcanism in late Variscan continental basins of the Bohemian Massif (Czech Republic): geochemical characteristic. - Chemie der Erde - Geochemistry 66, 1, 37-56.
- Váně M. (1963): Perspektivy výskytu karbonu v podloží křídy. - Čas. Mineral. Geol. 8, 370-373.
- Wood D. A. (1980): The application of a Th-Hf-Ta diagram to probleme of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of th British Tertiary volcanic province. - Earth Planet. Sci. Letters **50**, 392-532.